华南理工大学学报(自然科学版) ›› 2017, Vol. 45 ›› Issue (6): 52-58.doi: 10.3969/j.issn.1000-565X.2017.06.009

• 交通与运输工程 • 上一篇    下一篇

基于谱聚类与RS-KNN的城市快速路交通状态判别

商强1 林赐云1,2† 杨兆升1,2 邴其春1,4 田秀娟1 王树兴3   

  1. 1. 吉林大学 交通学院,吉林 长春 130022; 2. 吉林大学 吉林省道路交通重点实验室,吉林 长春 130022; 3. 山东高速 公路股份有限公司,山东 济南 250014; 4. 青岛理工大学 汽车与交通学院,山东 青岛 266520
  • 收稿日期:2016-10-08 修回日期:2016-12-27 出版日期:2017-06-25 发布日期:2017-05-02
  • 通信作者: 林赐云(1980-),男,博士,副教授,主要从事智能交通系统关键理论与技术研究. E-mail:linciyun@jlu.edu.cn
  • 作者简介:商强(1987-),男,博士生,主要从事智能交通系统关键理论与技术研究. E-mail:shangqiang14@ mails. jlu. edu. cn
  • 基金资助:

    国家科技支撑计划项目(2014BAG03B03);国家自然科学基金资助项目(51408257,51308248);山东省省管企业 科技创新项目(20122150251-1)

Traffic State Identification for Urban Expressway Based on Spectral Clustering and RS-KNN

SHANG Qiang1 LIN Ci-yun1,2 YANG Zhao-sheng1,2 BING Qi-chun1,4 TIAN Xiu-juan1 WANG Shu-xing3   

  1. 1.College of Transportation,Jilin University,Changchun 130022,Jilin,China; 2.Jilin Province Key Laboratory of Road Traffic,Jilin University,Changchun 130022,Jilin,China; 3.Shandong High-Speed Group Co.,Ltd.,Jinan 250014,Shandong,China; 4.College of Automobile and Transportation,Qingdao Technological University,Qingdao 266520,Shandong,China
  • Received:2016-10-08 Revised:2016-12-27 Online:2017-06-25 Published:2017-05-02
  • Contact: 林赐云(1980-),男,博士,副教授,主要从事智能交通系统关键理论与技术研究. E-mail:linciyun@jlu.edu.cn
  • About author:商强(1987-),男,博士生,主要从事智能交通系统关键理论与技术研究. E-mail:shangqiang14@ mails. jlu. edu. cn
  • Supported by:

    Supported by the National Key Technology Research and Development Program of the Ministry of Science and Technology of China(2014BAG03B03) and the National Natural Science Foundation of China(51408257,51308248)

摘要: 为了提高城市快速路交通状态判别的准确性,构建了一种基于谱聚类与随机子 空间集成 K 最近邻(RS-KNN)的交通状态判别模型. 以地点交通参数为基础,根据交通流 运行特性并结合中国道路服务水平的 4 个等级,采用谱聚类算法将交通状态划分为 4 类; 然后使用已分类的交通流数据训练 RS-KNN 模型. 通过上海快速路的实测数据完成模型 的实验验证和对比分析. 实验结果表明,所提出的模型不仅能够提高交通状态判别的精 度,而且具有良好的鲁棒性,其判别率比标准 KNN 模型、BP 神经网络模型和 SVM 模型分 别提高 7. 3%、4. 9%和 4. 5%.

关键词: 交通工程, 交通状态判别, 谱聚类, 随机子空间, K 最近邻

Abstract:

In order to improve the accuracy of traffic state identification for urban expressway,a traffic state identi- fication model based on spectral clustering and RS-KNN (Random Subspace Ensemble K-Nearest Neighbors) is de- veloped.In the investigation,first,on the basis of spot traffic parameters data and according to the operation cha- racteristics of traffic flow,the traffic state is divided into four categories with the consideration of the four levels of service for Chinese roads.Then,the classified traffic flow data are used to train the RS-KNN model.Finally,by using the real data of an expressway in Shanghai,China,an experimental verification and a comparative analysis for the proposed model are carried out.Experimental results demonstrate that the proposed model not only improves the accuracy of traffic state identification but also possesses good robustness; and that the identification rate of the proposed model is 7. 3%,4. 9% and 4. 5% higher than that of the standard KNN model,the BP neural network and the SVM model,respectively.

Key words: traffic engineering, traffic state identification, spectral clustering, random subspace, K-nearest neighbor

中图分类号: