华南理工大学学报(自然科学版) ›› 2005, Vol. 33 ›› Issue (3): 69-72,82.

• • 上一篇    下一篇

改进混合遗传算法在建筑结构优化设计中的应用

张延年1 刘剑平2 刘斌2 朱朝艳2 李艺2   

  1. 1.沈阳建筑大学 土木工程学院,辽宁 沈阳 110015;2.东北大学 资源与土木工程学院,辽宁 沈阳 110004
  • 收稿日期:2004-05-11 出版日期:2005-03-25 发布日期:2005-03-25
  • 通信作者: 张延年(1976-),男,博士,主要从事结构优化设计及结构抗震的研究 E-mail:zhangyannian@sina.com
  • 作者简介:张延年(1976-),男,博士,主要从事结构优化设计及结构抗震的研究
  • 基金资助:

    国家自然科学基金资助项目(40072006);辽宁省博士启动基金资助项目(20041014)

Application of Improved Hybrid Genetic Algorithm to Optimized Design of Architecture Structures

Zhang Yan-nian1  Liu Jian-ping2  Liu Bin2  Zhu Chao-yan2  Li Yi2   

  1. 1.School of Civil Engineering,Shenyang Architecture Univ.,Shenyang 1 10015,Liaoning,China;2.Schol of Resource&Civil Engineering,Northeastern Univ.,Shenyang 1 10004,Liaoning,China
  • Received:2004-05-11 Online:2005-03-25 Published:2005-03-25
  • Contact: 张延年(1976-),男,博士,主要从事结构优化设计及结构抗震的研究 E-mail:zhangyannian@sina.com
  • About author:张延年(1976-),男,博士,主要从事结构优化设计及结构抗震的研究
  • Supported by:

    国家自然科学基金资助项目(40072006);辽宁省博士启动基金资助项目(20041014)

摘要: 针对遗传算法在迭代过程中经常出现未成熟收敛、振荡、随机性太大和迭代过程缓慢等缺点,提出引入转基因算子与单亲遗传算子,同时提出一种离散变量结构优化设计的三等分割算法,通过与遗传算法相结合并运用到初始群体形成和进化过程中,使两种算法既可相互独立地运算,又可彼此相互协调、共同作用.根据工程实际,充分考虑规范规定的约束条件和各项技术标准要求,建立离散变量结构优化模型.各种算法的优化结果对比表明,改进混合遗传算法具有省时、高效、局部搜索能力强和全局性好的特点、

关键词: 离散变量, 结构优化, 改进遗传算法, 混合遗传算法

Abstract:

In the iterative process of the standard genetic algorithm (SGA),there often appear premature conver-gence,oscillation,over-randomization and low iterative speed.To solve these problems. some improved measures including transgenic operator and one-parent genetic operator are proposed.and a three-equal-partition algorithm (TEPA)fbr the structural optimization with discrete variables is provided.This algorithm is then combined with genetic algorithm(GA)in the process of primal colony forming and colony evolving.Thus,the two algorithms inde-pendently operate,mutually harmonize and jointly play their roles.Moreover,on the basis of practical structure de-signs in engineering,a model of structural optimization with discrete variables is established bv sufficienflv consi.dering the constraint conditions stipulated by the BODTI and the demands f0r various engineering standards. The opti-mized results obtained by different algorithms show that the improved hybrid genetic algorithm is of the advantages of saving time,high efficiency. good local searching ab ility and excellent global convergence property.

Key words: discrete variable, structural optimization, improved genetic algorithm , hybrid genetic algorithm