华南理工大学学报(自然科学版) ›› 2025, Vol. 53 ›› Issue (8): 137-148.doi: 10.12141/j.issn.1000-565X.240451

• 材料科学与技术 • 上一篇    下一篇

3D打印混凝土抗侵彻仿真模型

周捷航1,2, 杜龙雨1, 赖建中1, 尹雪祥1, 杨明宇1   

  1. 1.南京理工大学 材料科学与工程学院,江苏 南京 210094
    2.苏州混凝土水泥制品研究院有限公司,江苏 苏州 215000
  • 收稿日期:2024-11-25 出版日期:2025-08-25 发布日期:2025-01-24
  • 通信作者: 赖建中(1978—),男,博士,教授,主要从事混凝土智能制造与超高性能混凝土技术研究。 E-mail:jzh-lai@163.com
  • 作者简介:周捷航(1996—),男,博士,主要从事3D打印混凝土研究。E-mail: zhoujiehang@163.com
  • 基金资助:
    国家自然科学基金项目(52078253)

A Simulation Model of 3D Printed Concrete for Penetration Resistance

ZHOU Jiehang1,2, DU Longyu1, LAI Jianzhong1, YIN Xuexiang1, YANG Mingyu1   

  1. 1.School of Materials Science and Engineering,Nanjing University of Science and Technology,Nanjing 210094,Jiangsu,China
    2.Suzhou Concrete and Cement Products Research Institute Co. ,Ltd. ,Suzhou 215000,Jiangsu,China
  • Received:2024-11-25 Online:2025-08-25 Published:2025-01-24
  • Contact: 赖建中(1978—),男,博士,教授,主要从事混凝土智能制造与超高性能混凝土技术研究。 E-mail:jzh-lai@163.com
  • About author:周捷航(1996—),男,博士,主要从事3D打印混凝土研究。E-mail: zhoujiehang@163.com
  • Supported by:
    the National Nature Science Foundation of China(52078253)

摘要:

3D打印混凝土是一种极具潜力的新型建造技术,具备在军事领域的潜在应用价值。作为其在军事领域应用的前提,3D打印混凝土应具备良好的抗冲击性,从而为军事设施和人员提供可靠的防护。目前,针对3D打印混凝土抗冲击性能的实验研究开展受限于成本问题。因此,使用数值模拟技术能够提高研究效率,降低研究成本,并反映3D打印混凝土的失效过程和损伤情况。但目前3D打印混凝土的数值模拟技术没有考虑其独特的界面结构,从而无法完整地反映3D打印混凝土的力学特征。该研究根据氯离子渗透实验结果,定量表征了3D打印混凝土的界面区域占比,以此为依据结合前期力学性能研究建立了3D打印混凝土的抗侵彻数值仿真模型,并进一步研究其失效行为。通过与侵彻实验结果进行对比发现,3D打印混凝土的数值仿真模型的侵彻深度误差在4%以内,证明其具备良好的模拟精度。3D打印混凝土靶体在侵彻过程中具有损伤集中在界面处的特点,且界面处的能量吸收量要大于非界面区域。随着弹速提高和靶体强度的提高,弹体可能在侵彻过程中发生解体,从而使得侵彻深度突然降低,并进一步影响侵彻过程中的弹体速度变化规律。通过界面强化、改善3D打印工艺、添加高强骨料等措施,能够有效降低3D打印混凝土靶体的侵彻破坏深度,从而提升其抗侵彻性能。

关键词: 3D打印混凝土, 氯离子渗透, 侵彻破坏, 数值模拟

Abstract:

3D printed concrete is a promising new construction technology with potential applications in military field. As a prerequisite for its application in the military field, 3D printed concrete should possess strong impact resistance, providing reliable protection for military equipment and personnel. Currently, experimental research on the impact resistance of 3D printed concrete is limited by cost issues. Therefore, the use of numerical simulation technology can improve research efficiency, reduce costs, and better reflect the failure processes and damage conditions of 3D printed concrete. However, current numerical simulation technologies for 3D printed concrete do not take into account its unique interface structure, and thus fail to fully reflect the mechanical properties of 3D printed concrete. Based on the results of chloride ion penetration experiments, this study quantitatively characterizes the proportion of the interface region in 3D printed concrete. Using this as a basis, and in conjunction with previous mechanical performance studies, a numerical simulation model for the penetration resistance of 3D printed concrete was established, and its failure behavior was further investigated. By comparing the numerical simulation results with penetration experiment data, it was found that the penetration depth error of the 3D printed concrete model is within 4%, demonstrating its high simulation accuracy. During the penetration process, the 3D printed concrete target exhibits a characteristic of damage concentration at the interface, with the energy absorption at the interface being greater than that in the non-interface regions. As the projectile velocity and target strength increase, the projectile may disintegrate during penetration, leading to a sudden reduction in penetration depth, which further affects the variation of projectile velocity during the penetration process. Measures such as interface reinforcement, improvement of the 3D printing process, and the addition of high-strength aggregates can effectively reduce the penetration damage depth of 3D printed concrete targets, thereby enhancing their penetration resistance.

Key words: 3D printed concrete, chloride ion penetration, penetration damage, numerical simulation

中图分类号: