1 |
PUNYANI P, GUPTA R, KUMAR A .Neural networks for facial age estimation:a survey on recent advances[J].Artificial Intelligence Review,2020,53(5):3299-3347.
|
2 |
SU N, CHEN X, GUAN J,et al .Maritime target detection based on radar graph data and graph convolutional network[J].IEEE Geoscience and Remote Sensing Letters,2022,19:4019705/1-5.
|
3 |
CONG S, ZHOU Y .A review of convolutional neural network architectures and their optimizations[J].Artificial Intelligence Review,2022,56(3):1905-1969.
|
4 |
高晗,田育龙,许封元,等 .深度学习模型压缩与加速综述[J].软件学报,2021,32(1):68-92.
|
|
GAO Han, TIAN Yu-long, XU Feng-yuan,et al .Survey of deep learning model compression and acceleration[J].Journal of Software,2021,32(1):68-92.
|
5 |
IDELBAYEV Y, CARREIRA-PERPIÑÁN M Á .Low-rank compression of neural nets:learning the rank of each layer[C]∥ Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Seattle:IEEE,2020:8046-8056.
|
6 |
魏钰轩,陈莹 .基于自适应层信息熵的卷积神经网络压缩[J].电子学报,2022,50(10):2398-2408.
|
|
WEI Yu-xuan, CHEN Ying .Convolutional neural network compression based on adaptive layer entropy[J].Acta Electronica Sinica,2022,50(10):2398-2408.
|
7 |
WU J, CONG L, WANG Y,et al .Quantized convolutional neural networks for mobile devices[C]∥ Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition.Seattle:IEEE,2016:4820-4828.
|
8 |
JI M, SHIN S, HWANG S,et al .Refine myself by teaching myself:feature refinement via self-knowledge distillation[C]∥ Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Nashville:IEEE,2021:10659-10668.
|
9 |
ELSKEN T, METZEN J H, HUTTER F .Neural architecture search:a survey[J].Journal of Machine Learning Research,2019,20:1997-2017.
|
10 |
LEBEDEV V, GANIN Y, RAKHUBA M,et al .Speeding-up convolutional neural networks using fine-tuned CP-decomposition[C]∥ Proceedings of the 3rd International Conference on Learning Representations.San Diego:OpenReview.net,2015:1-11.
|
11 |
NOVIKOV A, PODOPRIKHIN D, OSOKIN A,et al .Tensorizing neural networks[C]∥ Proceedings of the 28th International Conference on Neural Information Processing Systems.Montreal:ACM,2015:442-450.
|
12 |
WANG W, SUN Y, ERIKSSON B,et al .Wide compression:tensor ring nets[C]∥ Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City:IEEE,2018:9329-9338.
|
13 |
KIM Y D, PARK E, YOO S,et al .Compression of deep convolutional neural networks for fast and low power mobile applications[C]∥ Proceedings of the 4th International Conference on Learning Representations.San Juan:OpenReview.net,2016:576-584.
|
14 |
NAKAJIMA S, SUGIYAMA M, BABACAN S D,et al .Global analytic solution of fully-observed variational Bayesian matrix factorization[J].Journal of Machine Learning Research,2013,14(1):1-37.
|
15 |
KIM T, LEE J, CHOE Y .Bayesian optimization-based global optimal rank selection for compression of convolutional neural networks[J].IEEE Access,2020,8:17605-17618.
|
16 |
KOLDA T G, BADER B W .Tensor decompositions and applications[J].SIAM Review,2009,51(3):455-500.
|
17 |
CHENG Z, LI B, FAN Y,et al .A novel rank selection scheme in tensor ring decomposition based on reinforcement learning for deep neural networks[C]∥ Proceedings of 2020 IEEE International Conference on Acoustics,Speech and Signal Processing.Barcelona:IEEE,2020:3292-3296.
|
18 |
LI N, PAN Y, CHEN Y,et al .Heuristic rank selection with progressively searching tensor ring network[J].Complex & Intelligent Systems,2022,8:771-785.
|
19 |
BESAG J .On the statistical-analysis of dirty pictures[J].Journal of the Royal Statistical Society Series B:Methodological,1986,48(3):259-302.
|
20 |
CAI G Y, LI J H, LIU X X,et al .Learning and compressing:low-rank matrix factorization for deep neural network compression[J].Applied Sciences,2023,13:2704/1-22.
|
21 |
XU Y, LI Y, ZHANG S,et al .Traned rank pruning for efficient deep neural networks[C]∥ Proceedings of 2019 the Fifth Workshop on Energy Efficient Machine Learning and Cognitive Computing-NeurIPS Edition.Vancouver:IEEE,2019:14-17.
|
22 |
HE Y, ZHANG X, SUN J .Channel pruning for accele-rating very deep neural networks[C]∥ Proceedings of 2017 IEEE International Conference on Computer Vision.Venice:IEEE,2017:1398-1406.
|
23 |
HE Y, LIN J, LIU Z,et al .AMC:autoML for model compression and acceleration on mobile devices[C]∥ Proceedings of the 15th European Conference on Computer Vision.Munich:Springer,2018:815-832.
|
24 |
LI H, KADAV A, DURDANOVIC I,et al .Pruning filters for efficient ConvNets[C]∥ Proceedings of the 5th International Conference on Learning Representations.Toulon:OpenReview.net,2017:1-13.
|
25 |
YU R, LI A, CHEN C F,et al .NISP:pruning networks using neuron importance score propagation[C]∥ Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City:IEEE,2018:9194-9203.
|
26 |
KIM H, KHAN M U K, C-M KYUNG .Efficient neural network compression[C]∥ Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Long Beach:IEEE,2019:12561-12569.
|
27 |
LI Y, LIN S, ZHANG B,et al .Exploiting kernel sparsity and entropy for interpretable CNN compression [C]∥ Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Long Beach:IEEE,2019:2800-2809.
|
28 |
LIN W S, WU H N, HUANG C T .Accelerating convolutional neural networks using iterative two-pass decomposition[C]∥ Proceedings of the 6th International Conference on Learning Representations.Vancouver:OpenReview.net,2018:1-11.
|
29 |
HUANG J, SUN W, HUANG L,et al .Deep compression with low rank and sparse integrated decomposition[C]∥ Proceedings of 2019 IEEE the 7th International Conference on Computer Science and Network Technology.Dalian:IEEE,2019:289-292.
|
30 |
ALDROUBI A, HAMM K, KOKU A B,et al .CUR decompositions,similarity matrices,and subspace clustering[J].Frontiers in Applied Mathematics and Statistics,2019,4:65/1-16.
|