华南理工大学学报(自然科学版) ›› 2023, Vol. 51 ›› Issue (8): 80-88.doi: 10.12141/j.issn.1000-565X.220250

所属专题: 2023年能源、动力与电气工程

• 能源、动力与电气工程 • 上一篇    下一篇

系泊形式对浮式风力机动力响应的影响

张若瑜 李耀隆 李焱 李昊然 黎国彦 唐友刚   

  1. 天津大学 天津市港口与海洋工程重点实验室/水利工程仿真与安全国家重点实验室/建筑工程学院,天津 300350
  • 收稿日期:2022-05-04 出版日期:2023-08-25 发布日期:2023-02-03
  • 通信作者: 李焱(1990-),男,博士,副研究员,主要从事海上风电工程及海洋浮体动力响应等研究。 E-mail:liyan_0323@tju.edu.cn
  • 作者简介:张若瑜(1981-),女,博士,副教授,主要从事海洋浮式平台及其系泊系统动力响应分析等研究。E-mail:zryu@163.com
  • 基金资助:
    国家自然科学基金资助项目(52001230);中国博士后科学基金资助项目(2021T140506);天津市自然科学基金资助项目(21JCQNJC00330);上海交通大学海洋工程国家重点实验室开放基金资助项目(GKZD010081);天津市研究生科研创新项目(2022SKY074)

Study on the Effect of Mooring Form on the Dynamic Response of Floating Offshore Wind Turbine

ZHANG Ruoyu LI Yaolong LI Yan LI Haoran LI Guoyan TANG Yougang   

  1. Tianjin Key Laboratory of Port and Ocean Engineering/State Key Laboratory of Hydraulic Engineering Simulation and Safety/School of Civil Engineering,Tianjin University,Tianjin 300350,China
  • Received:2022-05-04 Online:2023-08-25 Published:2023-02-03
  • Contact: 李焱(1990-),男,博士,副研究员,主要从事海上风电工程及海洋浮体动力响应等研究。 E-mail:liyan_0323@tju.edu.cn
  • About author:张若瑜(1981-),女,博士,副教授,主要从事海洋浮式平台及其系泊系统动力响应分析等研究。E-mail:zryu@163.com
  • Supported by:
    the National Natural Science Foundation of China(52001230);China Postdoctoral Science Foundation(2021T140506);the Natural Science Foundation of Tianjin(21JCQNJC00330)

摘要:

系泊系统是影响浮式风力机动力响应的关键因素,关系到风力机系统的安全与效率。为研究不同系泊系统对浮式风力机动力响应的影响,以一种新型浅吃水型浮式基础为研究对象,基于该基础储备浮力大的特点,分别采用悬链线式与张力腿式两种不同系泊系统,用于海上5 MW漂浮式风力机定位。建立风力机-基础-系泊系统耦合动力学数值模型,基于叶素-动量理论计算气动载荷,运用势流理论计算水动力载荷,采用三维有限元动力分析模型分别计算两种系泊缆张力。基于该耦合数值模型,对两种漂浮式风力机在作业状态下的动力响应特性进行时域计算,计算结果表明:在额定作业海况下,对比悬链线式系泊系统,采用张力腿式系泊的浮式风力机的纵荡运动均值减少0.7 m,垂荡运动幅值减少39%,同时纵摇运动均值和幅值显著降低,采用张力腿式系泊系统的浮式风力机具有更好的基础运动性能,但其系泊缆内张力均值与幅值更大,同时风机输出功率与风轮叶尖变形的变化幅值也更显著。因此,对于文中提出的新型浮式基础,采用张力腿式的系泊方式具有更好的运动性能,但其系泊安全性与发电效率不如采用悬链线式的系泊方式。

关键词: 系泊系统, 动力响应, 浮式风力机, 耦合数值模型

Abstract:

Mooring system is a key factor affecting the dynamic response of a floating wind turbine, and it is related to the safety and efficiency of the wind turbine system. To study the effect of different mooring systems on the dynamic response of floating wind turbines, this paper took a new type reduced-draft floating foundation as the research object. Based on the feature of large reserve buoyancy, two different mooring systems, namely the catenary lines and the tension legs, were used for positioning the 5 MW floating offshore wind turbines. The turbine-buoy-mooring coupled numerical model was established. The aerodynamic load was calculated based on the blade element momentum theory, the hydrodynamic load was calculated by the potential flow theory, and the tensions in the two kinds of mooring lines were calculated by the three-dimensional finite element dynamic model. Based on this coupled numerical model, the dynamic responses of two kinds of floating wind turbines under the operating state were simulated in the time domain. By comparing the results, it shows that under the rated operating sea conditions and compared with the catenary mooring system, the mean of surge motion of the floating wind turbine with the tension leg mooring system is reduced by 0.7 m, the amplitude of heave motion is reduced by 39%, and the mean and amplitude of pitch motion are reduced significantly. The floating wind turbine with the tension leg mooring system has better motion performance, but its mean and amplitude of the tension in the mooring lines are larger, and the variation amplitude of the output power and the tip deformation of the wind turbine are also more significant. Therefore, for the new floating foundation proposed in this work, the wind turbine with tension legs has better motion performance, but its mooring safety and power generation efficiency are not as good as the turbine with catenary mooring lines.

Key words: mooring system, dynamic response, offshore wind turbines, coupled numerical model

中图分类号: