华南理工大学学报(自然科学版) ›› 2023, Vol. 51 ›› Issue (8): 71-79.doi: 10.12141/j.issn.1000-565X.220352

所属专题: 2023年能源、动力与电气工程

• 能源、动力与电气工程 • 上一篇    下一篇

氯化镧的脱水/吸附反应动力学分析

楼波 周达恒 夏骏   

  1. 华南理工大学 电力学院,广东 广州 510640
  • 收稿日期:2022-06-06 出版日期:2023-08-25 发布日期:2023-03-28
  • 通信作者: 楼波(1965-),男,博士,副教授,主要从事燃烧理论与节能技术研究。 E-mail:loubo@scut.edu.cn
  • 作者简介:楼波(1965-),男,博士,副教授,主要从事燃烧理论与节能技术研究。
  • 基金资助:
    广东省自然科学基金资助项目(2021B1515020071)

Kinetics of Dehydration/Adsorption Reaction of LaCl3

LOU Bo ZHOU Daheng XIA Jun   

  1. School of Electric Power Engineering,South China University of Technology,Guangzhou 510640,Guangdong,China
  • Received:2022-06-06 Online:2023-08-25 Published:2023-03-28
  • Contact: 楼波(1965-),男,博士,副教授,主要从事燃烧理论与节能技术研究。 E-mail:loubo@scut.edu.cn
  • About author:楼波(1965-),男,博士,副教授,主要从事燃烧理论与节能技术研究。
  • Supported by:
    the Natural Science Foundation of Guangdong Province(2021B1515020071)

摘要:

作为最具应用前景的水合盐热化学储热材料之一,LaCl3的反应动力学对研究其储热特性起到了至关重要的作用。本研究通过实验测试了LaCl3脱水和吸附两个过程的反应特性,并对其进行了动力学分析。采用同步热分析仪测试了LaCl3·7H2O在升温速率为1、10、20 K/min下的脱水过程,研究表明,LaCl3·7H2O的脱水过程分为3个阶段,分别脱去4、2和1个水分子,不同升温速率下各阶段的起始温度有所不同。采用FWO法计算得到3个阶段的活化能值,其中第1阶段的活化能值最大。采用Doyle法求解了各阶段机理函数,其中第1阶段符合相边界反应中的收缩圆柱体模型,而第2和第3阶段符合随机成核和随后生长模型。采用恒温恒湿箱测试了LaCl3在温度为15、20、25、30 ℃和相对湿度(RH)为40%、60%、80%下的吸附过程。LaCl3吸附反应速率与温度、湿度的大小呈正相关,当相对湿度为40%时,LaCl3在吸附过程中不会发生液解。LaCl3在吸附初期反应速率较快,随着吸附过程的进行,LaCl3·nH2O晶体在表面生成,限制了LaCl3与水蒸气的接触,反应速率有所降低。拟合了LaCl3吸附反应的动力学方程,反应模型符合化学反应级数模型,反应级数为0.837。研究结果表明LaCl3具有良好的反应动力学性能,释热量高,是具有潜力的化学储热材料。

关键词: 氯化镧, 热化学储热, 反应动力学, 活化能, 机理函数

Abstract:

LaCl3 is one of the most promising hydrated salt thermochemical heat storage materials, and its reaction kinetics plays a crucial role in the study of its reaction characteristics. The study tested the reaction characteristics of dehydration and adsorption of LaCl3 by experiments and analyzed the reaction kinetics mechanism. The dehydration process of LaCl3·7H2O at the heating rates of 1, 10 and 20 K/min was tested by a synchronous thermal analyzer. The results show that the dehydration process of LaCl3·7H2O can be divided into three stages, where 4,2 and 1 water molecules are removed respectively.The initial temperature of each stage is different at different heating rates. The activation energy value of three stages was calculated by FWO method and the activation energy of the first stage was the largest. The Doyle method was used to solve the mechanism functions of each stage, in which the first stage conforms to the shrinking cylinder model in the phase boundary reaction, while the second and the third stage conformed to the random nucleation and subsequent growth model. The adsorption process of LaCl3 was tested at the temperature of 15, 20, 25, 30 ℃ and at the relative humidity of 40%, 60%, 80% by a constant temperature and humidity chamber. The adsorption reaction rate of LaCl3 is positively correlated with the temperature and humidity. When the relative humidity is 40%, LaCl3 does not decompose. The reaction rate of LaCl3 is faster in the initial stage of the adsorption process. As the adsorption process proceeds, LaCl3·nH2O crystals formed on the surface restricts the contact between LaCl3 and water vapor. The kinetic equation of LaCl3 adsorption reaction was fitted, the adsorption process of LaCl3 conformed to the chemical reaction series model, and the reaction order was 0.837. The results show that LaCl3 has good chemical kinetics and high heat release, and is a potential chemical thermal storage material.

Key words: lanthanum chloride, thermochemical heat storage, reaction kinetics, activation energy, mechanism function

中图分类号: