华南理工大学学报(自然科学版) ›› 2020, Vol. 48 ›› Issue (5): 125-133.doi: 10.12141/j.issn.1000-565X.190511

• 机械工程 • 上一篇    下一篇

PCA 的幅值滤波特性及在转子特征提取中的应用

郭明军1 李伟光1† 杨期江2 赵学智1
  

  1. 1. 华南理工大学 机械与汽车工程学院,广东 广州 510640; 2. 广州航海学院 轮机工程学院,广东 广州 510725
  • 收稿日期:2019-08-09 修回日期:2019-08-28 出版日期:2020-05-25 发布日期:2020-05-01
  • 通信作者: 李伟光(1958-),男,教授,博士生导师,主要从事智能制造、信号处理、故障诊断研究。 E-mail:wguangli@scut.edu.cn
  • 作者简介:郭明军(1991-),男,博士生,主要从事信号处理、故障诊断研究。E-mail:scutgmj@163.com
  • 基金资助:
    国家自然科学基金资助项目 (51875205,51875216); 广东省自然科学基金资助项目 (2018A030310017,2019A1515011780); 广州市科技计划资助项目 (201904010133); 广东省教育厅资助项目 (2018KQNCX191)

Amplitude Filter Characteristics of PCA and Its Application in Feature Extraction of Rotor 

GUO Mingjun1 LI Weiguang1 YANG Qijiang2 ZHAO Xuezhi1   

  1. 1. School of Mechanical & Automotive Engineering,South China University of Technology,Guangzhou 510640,Guangdong,China; 2. School of Marine Engineering,Guangzhou Maritime College,Guangzhou 510725,Guangdong,China
  • Received:2019-08-09 Revised:2019-08-28 Online:2020-05-25 Published:2020-05-01
  • Contact: 李伟光(1958-),男,教授,博士生导师,主要从事智能制造、信号处理、故障诊断研究。 E-mail:wguangli@scut.edu.cn
  • About author:郭明军(1991-),男,博士生,主要从事信号处理、故障诊断研究。E-mail:scutgmj@163.com
  • Supported by:
    Supported by the National Natural Science Foundation of China ( 51875205,51875216) and the Natural Sci-ence Foundation of Guangdong Province ( 2018A030310017,2019A1515011780)

摘要: 为了解决有效特征值的选择问题,从理论上证明了有效特征值的数量规律,即一个频率对应两个特征值; 推导了特征值的排序规律,即信号的幅值越大,其对应的两个特征值也越大。将上述两个性质统称为主成分分析的幅值滤波特性,提出了一种基于该特性的信号分离算法,并通过仿真信号及实际转子信号的分析,验证了算法在信号分离中的有效性。研究结果表明,该算法无论是在同时提取多个频率成分还是提取单个频率成分方面都表出了优良的特性,提纯信号中既不会含有多余成分,也不会发生相位偏移。最后将本文提出的算法应用于大型滑动轴承试验台转子的轴心轨迹提纯,成功识别了转子的不对中故障。

关键词: 主成分分析, 有效特征值, 幅值滤波, 特征提取, 故障诊断

Abstract: To solve the problem of selecting effective eigenvalues,the number law of effective eigenvalues was de-duced theoretically. That is,one frequency corresponds to two eigenvalues. The order rule of eigenvalues was de-duced as well. That is,the larger the amplitude of signal is,the larger the corresponding two eigenvalues are.The above two properties were collectively referred as amplitude filter characteristics of principal component analysis (PCA-AF),and a novel signal separation algorithm based on this characteristic was proposed. Through the analy-sis of simulation signal and the actual rotor signal,the effectiveness of the algorithm for signal separation was veri-fied. Research results show that the algorithm has excellent advantage in both extracting multiple and single fre-quency components,and the purified signal does not contain redundant components,nor does phase deviation oc-cur. Finally,the proposed algorithm was applied to purify rotor axis orbit of large sliding bearing test bed,and the misalignment fault of the rotor was identified successfully.

Key words: principal component analysis (PCA), effective eigenvalue, amplitude filter, feature extraction, fault diagnosis

中图分类号: