华南理工大学学报(自然科学版) ›› 2009, Vol. 37 ›› Issue (10): 55-59.

• 电子、通信与自动控制 • 上一篇    下一篇

基于混沌优化支持向量机的板形预测与优化

陈治明 黄晓红 罗飞 许玉格   

  1. 华南理工大学 自动化科学与工程学院, 广东 广州 510640
  • 收稿日期:2008-10-28 修回日期:2008-12-02 出版日期:2009-10-25 发布日期:2009-10-25
  • 通信作者: 陈治明(1981-),男,博士生,主要从事智能控制技术研究. E-mail:z_m_chen@163.com。
  • 作者简介:陈治明(1981-),男,博士生,主要从事智能控制技术研究.
  • 基金资助:

    国家自然科学基金资助项目(60774032);广州市科技攻关重点项目(200722-D0121);高等学校博士学科点专项科研基金资助项目(20070561006)

Strip Shape Prediction and Optimization Based on Chaotic Optimized Support Vector Machine

Chen Zhi-ming  Huang Xiao-hong  Luo Fei  Xu Yu-ge   

  1. School of Automation Science and Engineering, South China Univeraity of Technology, Guangzhou 510640, Guangdong, China
  • Received:2008-10-28 Revised:2008-12-02 Online:2009-10-25 Published:2009-10-25
  • Contact: 陈治明(1981-),男,博士生,主要从事智能控制技术研究. E-mail:z_m_chen@163.com。
  • About author:陈治明(1981-),男,博士生,主要从事智能控制技术研究.
  • Supported by:

    国家自然科学基金资助项目(60774032);广州市科技攻关重点项目(200722-D0121);高等学校博士学科点专项科研基金资助项目(20070561006)

摘要: 针对带钢热连轧中的板形控制问题,提出了一种基于混沌优化支持向量机模型的预测和优化算法.文中首先利用一种改进的变尺度混沌优化方法,结合实数编码遗传算法,进行最小二乘支持向量机最优模型参数的搜索;然后利用在线实测数据对模型进行训练并进行带钢平直度指数的预测,进而对模型输入参数中的控制参数进行优化以实现板形控制的优化.仿真实验结果表明,与BP神经网络相比,文中算法使板形预测精度提高,平直度指数优化约40%,且可以有效促进热连轧板形控制精度的提高。

关键词: 热连轧, 支持向量机, 平直度, 混沌优化

Abstract:

This paper deals with the strip shape control in hot continuous rolling and proposes a shape prediction and optimization algorithm based on a chaotic optimized support vector machine model. In the investigation, first, an improved multi-scale chaotic optimization algorithm combined with the real-coded genetic algorithm is proposed to optimize the parameters of the least-square support vector machine model. Then, the model is trained using some on-line data and is used to predict the flatness value of strip steel. Moreover, the control parameters among the in- put parameters of the model are optimized to improve the shape control. Simulated results show that, as compared with the BP neural network, the proposed algorithm is more effective in predicting the flatness and improving the accuracy of shape control in hot continuous rolling, with a flatness value optimized by 40%.

Key words: hot continuous rolling, support vector machine, flatness, chaotic optimization