华南理工大学学报(自然科学版) ›› 2009, Vol. 37 ›› Issue (10): 60-65.

• 电子、通信与自动控制 • 上一篇    下一篇

跳变时滞系统非脆弱H∞滤波器的设计

陈淼 王道波 王志胜   

  1. 南京航空航天大学 自动化学院, 江苏 南京 210016
  • 收稿日期:2008-10-24 修回日期:2008-12-29 出版日期:2009-10-25 发布日期:2009-10-25
  • 通信作者: 陈淼(1981-),男,博士生,主要从事鲁棒控制、非脆弱控制研究. E-mail:vocalist_chen@yahoo.cn
  • 作者简介:陈淼(1981-),男,博士生,主要从事鲁棒控制、非脆弱控制研究.
  • 基金资助:

    国家自然科学基金资助项目(60874037)

Design of Non-Fragile H∞ Filter for Time-Delay Jump Systems

Chen Miao  Wang Dao-bo  Wang Zhi-sheng   

  1. College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, Jiangsu, China
  • Received:2008-10-24 Revised:2008-12-29 Online:2009-10-25 Published:2009-10-25
  • Contact: 陈淼(1981-),男,博士生,主要从事鲁棒控制、非脆弱控制研究. E-mail:vocalist_chen@yahoo.cn
  • About author:陈淼(1981-),男,博士生,主要从事鲁棒控制、非脆弱控制研究.
  • Supported by:

    国家自然科学基金资助项目(60874037)

摘要: 文中针对一类具有马尔可夫跳变参数的Ito类型不确定随机时滞系统.讨论了此类系统的鲁棒非脆弱H∞滤波器的设计问题.在被控对象及滤波器同时存在不确定性的情况下,使闭环滤波误差系统的鲁棒随机指数均方稳定,且干扰抑制性能指标小于给定上界.针对被控对象和滤波器均存在加法摄动的情况,运用线性矩阵不等式(LMI)和Ito公式,给出了非脆弱滤波器存在的可解性条件.数值算例表明了该方法的有效性,并通过比较说明了非脆弱滤波器的优越性.

关键词: 马尔可夫跳变, 时滞系统, 非脆弱滤波, 加性增益摄动, 线性矩阵不等式

Abstract:

In this paper, the robust non-fragile H∞ filtering is investigated for a class of uncertain stochastic Itotype time-delay system with Markov jump parameters, and a Markov jump filter is designed to guarantee the mean square stability of robust stochastic exponential of the closed-loop filter error system with uncertain controlled objects and filters, and to keep the disturbance attenuation level below a given upper bound. Moreover, by considering the additive perturbations of controlled objects and filters, the solvability condition for the existence of robust non-fragile filter is derived in the form of linear matrix inequality (LMI) and generalized Ito formula. The effectiveness of the proposed approach is then verified using a numerical example, and the superiority of the designed non-fragile filter is finally demonstrated through comparison.

Key words: Markov jump, time-delay system, non-fragile filtering, additive gain perturbation, linear matrix inequality