华南理工大学学报(自然科学版) ›› 2008, Vol. 36 ›› Issue (2): 17-22.

• 交通运输工程 • 上一篇    下一篇

城市交通系统的降维状态判别规则

翁小雄 翁丹 叶丽萍   

  1. 华南理工大学 交通学院, 广东 广州 510640
  • 收稿日期:2007-01-22 修回日期:1900-01-01 出版日期:2008-02-25 发布日期:2008-02-25
  • 通信作者: 翁小雄(1958-),女,副教授,博士,主要从事智能交通信息系统研究. E-mail:ctxxweng@scut.edu.cn
  • 作者简介:翁小雄(1958-),女,副教授,博士,主要从事智能交通信息系统研究.
  • 基金资助:

    国家自然科学基金资助项目(50778074);广东省科技计划重大专项(2003A1010302)

Rules of Dimension-Reduced State Estimation in Urban Traffic System

Weng Xiao-xiong  Weng Dan  Ye Li-ping    

  1. School of Traffic and Communications, South China University of Technology, Guangzhou 510640, Guangdong, China
  • Received:2007-01-22 Revised:1900-01-01 Online:2008-02-25 Published:2008-02-25
  • Contact: 翁小雄(1958-),女,副教授,博士,主要从事智能交通信息系统研究. E-mail:ctxxweng@scut.edu.cn
  • About author:翁小雄(1958-),女,副教授,博士,主要从事智能交通信息系统研究.
  • Supported by:

    国家自然科学基金资助项目(50778074);广东省科技计划重大专项(2003A1010302)

摘要: 城市交通流是一个复杂多变、非线性、非结构化、时空变化的随机大系统,目前常用的固定阈值评价方法无法全面判别交通系统的运行状态.随着我国智能交通系统建设规模的不断扩大,急需寻找一种适合我国混合现象严重的城市交通流的、符合交通流运动机理的交通状态判别模型.文中在研究混合交通流多维交通状态变量的基础上,利用粗糙集理论,建立四维状态判别模型,通过数据离散和属性约简得到二维决策表,以图表结合的方式实现模型可视化,提出一种城市交通系统降维状态判别规则,并以实例说明其能够有效剔除系统冗余信息,降低模型复杂性,提高挖掘规则的精度.

关键词: 城市交通系统, 交通流, 粗糙集, 属性约简, 判别规则

Abstract:

As the urban traffic flow is a complex, changeable, nonlinear, unstructured and random system with large scale and temporal-spatial variations, the common methods with fixed threshold cannot effectively estimate the traffic movement condition. With the continuous development of the Intelligent Traffic System, it is imperative to find an estimation model which is suitable for the mixed traffic condition in China and accordant with the movement mechanism of traffic flow. In this paper, the multi-dimension state characteristics of mixed traffic flow are analyzed, and a four-dimension state estimation model is established based on the rough set theory. A two-dimension decision table is then obtained via data discretization and attribute reduction, and the rules of dimension-reduced state estimation for urban traffic system are presented by visualizing the model in a form combining both figures and tables. The results of a case study show that the proposed method can effectively eliminate the redundancy information of the system, reduce the system complexity and improve the precision of the mining rule.

Key words: urban traffic system, traffic flow, rough set, attribute reduction, estimation rule