华南理工大学学报(自然科学版) ›› 2006, Vol. 34 ›› Issue (1): 57-61.

• 电子、通信与自动控制 • 上一篇    下一篇

用于状态估计的自适应粒子滤波

邓小龙 谢剑英 郭为忠   

  1. 1.上海交通大学 自动化系,上海 200030;2.上海交通大学 机械与动力工程学院,上海 200030)
  • 收稿日期:2005-01-05 出版日期:2006-01-25 发布日期:2006-01-25
  • 通信作者: 邓小龙(1972-),男,博士生,主要从事最优估计、非线性滤波和粒子滤波方面的研究 E-mail:xl-deng@sjtu.edu.cn
  • 作者简介:邓小龙(1972-),男,博士生,主要从事最优估计、非线性滤波和粒子滤波方面的研究
  • 基金资助:

    国家自然科学基金资助项目(50405017)

Adaptive Particle Filtration for State Estimation

Deng Xiao-long  Xie Jian-ying  Cuo Wei-zhong   

  1. 1.Dept.of Automation,Shanghai Jiaotong Univ.,Shanghai 200030,China;2.School of Mechanical Engineering,Shanghai Jiaotong Univ.,Shanghai 200030.China
  • Received:2005-01-05 Online:2006-01-25 Published:2006-01-25
  • Contact: 邓小龙(1972-),男,博士生,主要从事最优估计、非线性滤波和粒子滤波方面的研究 E-mail:xl-deng@sjtu.edu.cn
  • About author:邓小龙(1972-),男,博士生,主要从事最优估计、非线性滤波和粒子滤波方面的研究
  • Supported by:

    国家自然科学基金资助项目(50405017)

摘要: 分析了粒子滤波的性能关键,提出了一种新的自适应粒子滤波算法.该算法采用一种新提议分布,即将UKF(Unscented Kalman Filter)与自适应强跟踪滤波器(STF)相结合.新提议分布通过UKF构造粒子群,而粒子群中的每个粒子中的每个sigma点用STF来更新,它可以在线调节因子而使得算法自适应.非线性状态估计仿真试验证实了改进的粒子滤波算法的有效性.

关键词: 粒子滤波, 状态估计, UKF, 自适应滤波, 强跟踪滤波器

Abstract:

This paper analyzes the keys for the performance of particle filter(PF)and presents a new adaptive PF algorithm.The algorithm adopts a new proposal distribution combining the unscented Kalman filter(UKF)with the adaptive strong tracking filter(STF).The new proposal distribution adopts UKF to produce the particles,in which each sigma point of every particle is updated by STF.Moreover,the added scaling factor can be adjusted on line to
make the algorithm adaptive.Simulated experiments of nonlinear state estimation are finally ca~ied out to confirm the validity of the improved PF algorithm.

Key words: particle filter, state estimation, unscented Kalman filter, adaptive filtering, strong tracking filter