华南理工大学学报(自然科学版) ›› 2005, Vol. 33 ›› Issue (5): 19-22.

• • 上一篇    下一篇

改进SVM及其在时问序列数据预测中的应用

奉国和 朱思铭   

  1. 中山大学 数学与计算科学学院,广东 广州 510275
  • 收稿日期:2004-06-28 出版日期:2005-05-25 发布日期:2005-05-25
  • 通信作者: 奉国和(1971-),男,博士生,主要从事人工智能、机器学习方面的研究 E-mail:mousefeng@163.net
  • 作者简介:奉国和(1971-),男,博士生,主要从事人工智能、机器学习方面的研究
  • 基金资助:

    国家自然科学基金资助项目(10371135)

Modified SVM and Its Application to Time Series Forecasting

Feng Guo-he  Zhu Si-ming   

  1. School of Mathematics and Computational Science,Sun Yat·sen Univ.,Guangzhou 510275,Guangdong,China
  • Received:2004-06-28 Online:2005-05-25 Published:2005-05-25
  • Contact: 奉国和(1971-),男,博士生,主要从事人工智能、机器学习方面的研究 E-mail:mousefeng@163.net
  • About author:奉国和(1971-),男,博士生,主要从事人工智能、机器学习方面的研究
  • Supported by:

    国家自然科学基金资助项目(10371135)

摘要: 运用标准支持向量机预测海量金融时间序列数据会出现训练速度慢、内存开销大的问题,文中提出一种分解合作加权的回归支持向量机,将大样本集分解成若干工作子集,分段提炼出支持向量机,同时根据支持向量的重要性给出不同的错误惩罚度,并将其应用于证券指数预测.与标准算法相比较,文中方法在保证泛化精度一致的前提下,极大地加快了训练速度.

关键词: 支持向量机, 分解合作加权支持向量机, 时间序列, 证券指数

Abstract:

As the forecasting of a huge-size financial time series by training a standard SVM (Suppo~Vector Machine) will result in slow training speed and large memory spending,a decomposition-cooperation-weighted SVM regression is put forward and used to predict the stock index.In the proposed method,a large specimen set is de-composed into several subsets,and the SVMs in diferent subsets are independently extracted.According to the im-portance of the obtained SVMs,diferent error punishment degrees are obtained. Compared with the traditional SVM ,the propo sed method greatly speeds up the training process with almost the same precision.

Key words: support vector machine, decompo sition-cooperation-weighted support vector machine, time series, stock index