华南理工大学学报(自然科学版) ›› 2003, Vol. 31 ›› Issue (8): 53-56.

• • 上一篇    下一篇

样条虚边界元法的数值稳定性与误差估计

苏  成  郑  淳   

  1. 华南理工大学 土木工程系‚广东 广州510640
  • 出版日期:2003-08-20 发布日期:2022-05-13
  • 作者简介:苏成(1968-)‚男‚博士‚副教授‚主要从事计算 力学、高层建筑结构与桥梁结构的研究.

Numerical Stability and Error Estimate of the Spline Fictitious Boundary Element Method#br#

Su Cheng  Zheng Chun   

  1. Department of Civil Engineering‚South China Univ.of Tech.‚Guangzhou510640‚China
  • Online:2003-08-20 Published:2022-05-13

摘要: 样条虚边界元法是针对传统间接奇异边界元法存在的问题而提出的一种半解析 半数值方法.它既保留了边界元法的优点‚也避开了求解奇异积分方程的问题‚在试函数 和权函数的选取方面也作出了改进‚具有精度好、效率高等优点.本文主要针对弹性力学 平面问题样条虚边界元法在数值稳定性与误差估计方面的问题展开讨论‚获得了虚边界 的布设规律及方法误差的直观度量‚为该法的实际应用打下了更好的基础. 

关键词: 边界元法, 样条函数, 样条虚边界元法, 数值稳定性, 误差估计

Abstract: The spline fictitious boundary element method (SFBEM) is a modified method to the conventional indirect
singular boundary element method.SFBEM not only retains the advantages of boundary element method‚but also avoids
solving singular integral equations.Improvements in the choice of trial functions and weight functions have also been
made in SFBEM.High accuracy and efficiency have been observed in the method.This paper presents the investigation
of numerical stability and error estimate of SFBEM in elastic plane problems.Several conclusions regarding the above is-
sues are obtained in this paper‚which lays a solid foundation for its practical application.

Key words: boundary element method, spline functions, spline fictitious boundary element method, numerical stability, error estimate

中图分类号: