华南理工大学学报(自然科学版) ›› 2018, Vol. 46 ›› Issue (1): 9-17.doi: 10.3969/j.issn.1000-565X.2018.01.002

• 能源与动力工程 • 上一篇    下一篇

倾斜多孔方腔内自然对流非正交 MRT-LB 数值模拟

李培生 李伟 张莹 孙金丛 王昭太   

  1. 南昌大学 机电工程学院,江西 南昌 330031
  • 收稿日期:2017-06-02 修回日期:2017-09-14 出版日期:2018-01-25 发布日期:2017-12-01
  • 通信作者: 李培生(1969-),男,教授,主要从事生物质/煤燃烧及资源化利用研究. E-mail:lipeisheng@ncu.edu.cn
  • 作者简介:李培生(1969-),男,教授,主要从事生物质/煤燃烧及资源化利用研究.
  • 基金资助:
    国家自然科学基金资助项目(51566012); 江西省自然科学基金资助项目(20151BAB206048); 南昌大学研究生创新基金资助项目(CX2016081)

Multiple-Relaxation-Time Lattice Boltzmann Model for Convection Heat Transfer in an Inclined Porous Media

LI Peisheng LI Wei ZHANG Ying SUN Jincong WANG Zhaotai   

  1. School of Mechanical & Electrical Engineering,Nanchang University,Nanchang 330031,Jiangxi,China
  • Received:2017-06-02 Revised:2017-09-14 Online:2018-01-25 Published:2017-12-01
  • Contact: 李培生(1969-),男,教授,主要从事生物质/煤燃烧及资源化利用研究. E-mail:lipeisheng@ncu.edu.cn
  • About author:李培生(1969-),男,教授,主要从事生物质/煤燃烧及资源化利用研究.
  • Supported by:
    Supported by the National Natural Science Foundation of China(51566012)and the Natural Science Foundation of Jiangxi Province of China(20151BAB206048)

摘要: 建立了倾斜多孔方腔自然对流的非正交多松弛系数格子 Boltzmann (MRT-LB)模型,选取典型热流动问题分析了非正交转换矩阵的 MRT-LB 模型数值稳定性和运算效率,并对倾斜多孔方腔内自然对流现象进行了模拟研究,讨论了孔隙度 ε(ε = 0. 4,0. 6,0. 9)、倾角 θ ( -180°≤θ≤180°)、Rayleigh 数(104 ≤Ra≤107 )及 Darcy 数(Da = 10-4,10-2)等参数对流动传热的影响. 结果表明:非正交转换矩阵的 MRT-LB 模型具有更好的数值稳定性和收敛速度;倾斜多孔方腔高温壁面上平均 Nusselt 数随倾角变化呈 M 型分布;Ra 数、Da 数增大使得 Nusselt 数最大值所对应的倾斜角度 θ max 呈滞后规律;低 Ra 数时Nusselt 数曲线出现不连续变化现象. 最后通过曲线拟合得到 Nusselt 数与Ra* (Ra* =DaRa)数的幂函数关系式.

关键词: 多松弛格子, Boltzmann 模型, 倾斜多孔方腔, 自然对流, 数值稳定性

Abstract: A non-orthogonal multiple-relaxation-time lattice Boltzmann model is developed for simulating convection heat transfer in an inclined cavity filed with porous media at a representative elementary volume scale. The numeri-cal stability and computational efficiency of the Bhatnagar-Gross-Krook (BGK) model and the multiple relaxation model (MRT) are analyzed and compared by means of selecting the typical flow and heat transfer problems. It's found that present numerical results are well congruous with the previous results. Then simulation is performed in the convective heat transfer in inclined cavity,and the influence of porosity ε (ε =0. 4,0. 6,0. 9),Darcy num-ber (Da =10-4 ,10-2 ),Rayleigh number (104 ≤Ra≤107) and inclined angle θ ( -180°≤θ≤180°) is dis-cussed on the convective heat transfer. The results indicate that the non-orthogonal MRT-LB model has good numeri-cal stability and convergence speed when low viscosity is dealt with. Average Nusselt number at hot sidewall pre-sents the symmetrical distribution of M type with the change of inclined angle and obtains the extreme value in the specific inclination interval. With the Darcy number,Rayleigh number increasing,the maximum average Nusselt number corresponding angle presents hysteresis phenomenon. The average Nusselt number discontinues change at low Ra number. The power function relation of the average Nusselt number with Ra* number (Ra* = DaRa) is obtained.

Key words: multiple-relaxation-time lattice, Boltzmann model, inclined porous square cavity, natural convection, numerical stability

中图分类号: