华南理工大学学报(自然科学版) ›› 2010, Vol. 38 ›› Issue (9): 35-39.doi: 10.3969/j.issn.1000-565X.2010.09.007

• 电子、通信与自动控制 • 上一篇    下一篇

随机泛函微分系统的脉冲镇定

姚凤麒 邓飞其 彭云建   

  1. 华南理工大学 自动化科学与工程学院, 广东 广州 510640
  • 收稿日期:2010-02-04 修回日期:2010-04-25 出版日期:2010-09-25 发布日期:2010-09-25
  • 通信作者: 姚凤麒(1984-),女,博士生,主要从事脉冲随机控制理论及其应用研究. E-mail:sarah850217@foxmail.com
  • 作者简介:姚凤麒(1984-),女,博士生,主要从事脉冲随机控制理论及其应用研究.
  • 基金资助:

    国家自然科学基金资助项目(60874114); 中国博士后科学基金资助项目(20090450867)

Impulsive Stabilization of Stochastic Functional Differential Systems

Yao Feng-qi  Deng Fei-qi  Peng Yun-jian   

  1. School of Automation Science and Engineering,South China University of Technology,Guangzhou 510640,Guangdong,China
  • Received:2010-02-04 Revised:2010-04-25 Online:2010-09-25 Published:2010-09-25
  • Contact: 姚凤麒(1984-),女,博士生,主要从事脉冲随机控制理论及其应用研究. E-mail:sarah850217@foxmail.com
  • About author:姚凤麒(1984-),女,博士生,主要从事脉冲随机控制理论及其应用研究.
  • Supported by:

    国家自然科学基金资助项目(60874114); 中国博士后科学基金资助项目(20090450867)

摘要: 针对一般的随机泛函微分系统,提出了可脉冲均方一致渐近镇定和可周期性脉冲均方一致渐近镇定的定义.利用Lyapunov函数和一个一维线性脉冲时滞系统的渐近稳定性条件,得到了随机泛函微分系统可周期性脉冲均方一致渐近镇定的充分判据,并给出了脉冲控制律的具体设计方法.脉冲控制函数为正比例函数,脉冲发生间隔则依赖于系统本身的参数和选取的脉冲控制函数的比例系数.数值例子表明所设计的脉冲控制器是有效的.

关键词: 随机系统, 脉冲镇定, 周期性脉冲镇定, 均方一致渐近镇定

Abstract:

In this paper,first,the concepts of mean-square uniformly asymptotic stabilization by impulses and by periodical impulses are proposed for general stochastic functional differential systems.Next,the sufficient criteria for mean-square uniformly asymptotic stabilization of the stochastic systems by periodical impulses are put forward by using Lyapunov functions and the asymptotic stability of a scalar linear impulsive delay differential system.Then,a specific design method of impulsive controllers is presented,in which the impulse functions are chosen as proportional functions,and the intervals of impulsive moment depend on system parameters and the selected proportional coefficients of impulse functions.Finally,a numerical example is presented to verify the effectiveness of the designed controllers.

Key words: stochastic systems, impulsive stabilization, periodical impulsive stabilization, mean-square uniformly asymptotic stabilization