华南理工大学学报(自然科学版) ›› 2026, Vol. 54 ›› Issue (1): 10-18.doi: 10.12141/j.issn.1000-565X.250040

• 能源、动力与电气工程 • 上一篇    下一篇

同轴双气室等离子体发生器性能的数值模拟研究

刘定平  潘澍桓  吴超超   

  1. 华南理工大学 电力学院,广东 广州 510640

  • 出版日期:2026-01-25 发布日期:2025-05-16

Numerical Simulation on Characteristics of Coaxial Dual-Chamber Plasma Generator

LIU Dingping  PAN Shuhuan  WU Chaochao   

  1. School of Electrical Power, South China University of Technology, Guangzhou 510640, Guangdong, China
  • Online:2026-01-25 Published:2025-05-16

摘要:

本文基于磁流体动力学(MHD)理论,对同轴双气室结构等离子体发生器中的电弧等离子体进行了数值模拟研究。研究旨在揭示电弧等离子体的分布特性和流场行为,进而分析外部参数与电弧行为的关系。研究采用了轴对称模型,结合流场与电磁场的耦合计算,探讨了电弧弧压、阴极斑点分布与气流参数之间的关系。仿真结果表明,电弧弧压对径向气流较不敏感,在所研究的参数范围内,径向气压波动对电弧弧压的影响幅度最高仅为4.2%,而与轴向气流速度则呈强正相关性,并通过拟合得到了关系式。经温度、速度分布分析显示,喷口的最高温度可达到3500 K以上,喷口性能足以满足点燃劣质煤并稳定燃烧的需求。此外,研究证实了同轴双气室结构在合理的气流设置下,可以使等离子体点火器兼备高功率和更长的电极寿命,揭示了同轴双气室结构的防烧蚀机制,即两路气流的交替冲扫作用:轴向气流主要控制输出功率;而径向气流则通过周期性波动控制弧根位置,避免发生单点烧蚀,从而延长电极的使用寿命。研究还在优化设计试验中确定了两路气流的平衡点,为未来等离子体发生器长寿命化研究提供了理论支持。

关键词: 等离子体点火器, 数值模拟, 磁流体动力学, 防烧蚀机制

Abstract:

This study conducts a numerical simulation of a coaxial dual-chamber plasma generator based on MHD theory. The research aims to reveal the distribution characteristics of the arc-plasma and the behavior of the flow field, further analyzing the relationship between external parameters and arc behavior. An axisymmetric model is adopted, incorporating coupled calculations of the flow field and electromagnetic field to investigate the correlations among arc voltage, cathode spot distribution, and airflow parameters. The simulation results indicate that arc voltage is relatively insensitive to radial airflow; within the studied parameter range, fluctuations in radial airflow pressure have a maximum impact of only 4.2% on arc voltage. In contrast, arc voltage exhibits a strong positive correlation with axial airflow velocity, and a fitted correlation equation has been obtained. Temperature and velocity distribution analyses show that the maximum nozzle temperature exceeds 3500 K, ensuring sufficient ignition capability for low-quality coal and stable combustion performance. Moreover, the results confirm that with appropriate airflow settings, the coaxial dual-chamber structure enables the plasma igniter to achieve both high power and extended electrode lifespan. The study reveals the anti-ablation mechanism of this structure, wherein the alternating sweeping effects of the two airflow paths play distinct roles: axial airflow primarily regulates output power, while radial airflow controls arc root movement through periodic oscillations, effectively preventing single-point ablation and prolonging electrode life. Furthermore, an optimized design analysis has identified the equilibrium point between the two airflow paths, providing theoretical support for future research on the longevity of plasma generators.

Key words: plasma igniter, numerical simulation, Megnetohydrodynamics, anti-ablation mechanism