华南理工大学学报(自然科学版) ›› 2026, Vol. 54 ›› Issue (1): 1-9.doi: 10.12141/j.issn.1000-565X.250027

• 能源、动力与电气工程 •    下一篇

有限空间金属纤维表面低氮燃烧特性研究

甘云华1  陈魁1  陈宁光1  程静2  徐艳2   

  1. 1.华南理工大学 电力学院,广东 广州 510640;

    2.深圳市特种设备安全检验研究院,广东 深圳 518038

  • 出版日期:2026-01-25 发布日期:2025-07-18

Study on Low Nitrogen Combustion Characteristics of Metal Fiber Burner in Limited Space

GAN Yunhua1  CHEN Kui1  CHEN Ningguang1  CHENG Jing2  XU Yan2   

  1. 1. School of Electric Power Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China;
    2. Shenzhen special equipment safety inspection Institute, Shenzhen 518038, Guangdong, China
  • Online:2026-01-25 Published:2025-07-18

摘要:

金属纤维表面燃烧技术因其燃烧过程稳定、温度分布均匀等优势,成为目前燃气锅炉最具发展前景的低氮燃烧技术之一。基于有限空间金属纤维表面低氮燃烧实验数据,建立了三维金属纤维表面燃烧物理模型,并基于多孔介质阻力模型、金属纤维湍流模型、EDC燃烧模型进行了全预混燃烧数值求解,获得了有限空间金属纤维表面燃烧的火焰燃烧情况、热态烟气流场速度特性、炉膛内的温度场分布和燃料分布。考虑了不同过量空气系数的影响,得到了金属纤维表面燃烧快速型NOx和热力型NOx排放特性和平均生成速率分布规律。结果表明,不同过量空气系数下,快速型NOx比热力型NOx的生成速率更快,但受限于有效反应空间和反应持续时间,快速型NOx在炉膛中所占体积远小于热力型NOx;随着过量空气系数增大,热力型NOx的生成速率和排放量都逐渐减小。当α=1.6时,烟气出口的NOx排放为22.55 mg/m3,满足低氮燃烧的标准。因此,除改变火焰温度、氧气浓度和燃烧方式,通过控制过量空气系数来抑制热力型NOx生成,可有效实现工业燃气锅炉超低氮燃烧。

关键词: 低氮燃烧, 金属纤维燃烧器, 表面燃烧, 数值模拟

Abstract:

Metal fiber surface combustion technology has become one of the most promising low nitrogen combustion technologies for gas boilers because of its advantages of stable combustion process and uniform temperature distribution. Based on the low-nitrogen combustion experimental data of metal fiber surface in limited space, a three-dimensional physical model of metal fiber surface combustion was established, and the full-premixed combustion numerical solution was carried out based on the porous medium resistance model, metal fiber turbulence model and EDC combustion model. The flame combustion conditions and the velocity characteristics of hot smoke flow field of metal fiber surface combustion in limited space were obtained. Temperature field distribution and fuel distribution in furnace. Considering the influence of different excess air coefficient, the emission characteristics and average generation rate distribution of fast burning NOx and thermal NOx on metal fiber surface were obtained. The results show that under different excess air coefficients, the generation rate of fast NOx is faster than that of thermal NOx. However, limited by the effective reaction space and reaction duration, the volume occupied by fast NOx in the furnace is much smaller than that of thermal NOx.With the increase of excess air coefficient, the generation rate and emission of thermal NOx gradually decrease. When α=1.6, the emission of NOx from flue gas outlet is 22.55 mg/m3, which meets the standard of low nitrogen combustion. Therefore, in addition to changing the flame temperature, oxygen concentration and combustion mode, the generation of thermodynamic NOx can be suppressed by controlling the excessive air coefficient, and ultra-low nitrogen combustion of industrial gas boilers can also be effectively achieved.


Key words: low nitrogen combustion, metal fiber burner; surface combustion, numerical simulation