华南理工大学学报(自然科学版) ›› 2019, Vol. 47 ›› Issue (9): 33-39.doi: 10.12141/j.issn.1000-565X.180539

• 能源、动力与电气工程 • 上一篇    下一篇

基于轨迹规划的波浪发电系统的分段控制

杨金明 黄秀秀 陈渊睿 谢泽坤   

  1. 华南理工大学 电力学院,广东 广州 510640
  • 收稿日期:2018-10-31 修回日期:2019-05-13 出版日期:2019-09-25 发布日期:2019-08-01
  • 通信作者: 杨金明(1962-),男,教授,主要从事能源与动力系统中电力电子及其控制技术研究. E-mail:jmyang@scut.edu.cn
  • 作者简介:杨金明(1962-),男,教授,主要从事能源与动力系统中电力电子及其控制技术研究.
  • 基金资助:
    广东省教育部产学研合作项目(2013B09050089)

Subsection Control of Wave Power Generation System Based on Trajectory Planning

 YANG Jinming HUANG Xiuxiu CHEN Yuanrui XIE Zekun   

  1. School of Electric Power,South China University of Technology,Guangzhou 510640,Guangdong,China 
  • Received:2018-10-31 Revised:2019-05-13 Online:2019-09-25 Published:2019-08-01
  • Contact: 杨金明(1962-),男,教授,主要从事能源与动力系统中电力电子及其控制技术研究. E-mail:jmyang@scut.edu.cn
  • About author:杨金明(1962-),男,教授,主要从事能源与动力系统中电力电子及其控制技术研究.
  • Supported by:
    Supported by the Industry,University and Research Cooperation Project of Guangdong Province and Ministry of Education (2013B09050089)

摘要: 针对直驱式波浪发电系统的工作效率较低问题,研究基于一种全封闭的振荡浮 子波浪发电系统,采取高速发电和低速储能的分段控制运行策略,结合基于无源性理论的 控制方法,研究了该系统的综合最大功率捕获控制问题. 为避免分段控制过程中造成的波 动和冲击现象,运用微分平滑性理论,对切换过渡过程的能量变化轨迹进行了规划. 仿真 结果表明,分段控制运行策略以及微分平滑性理论的应用,使振荡浮子式波浪发电系统达 到了既提高发电效率又避免冲击的控制效果.

关键词: 波浪发电, 微分平滑性, 轨迹规划, 无源控制

Abstract: Subsection control strategy of power generation at high-speed and energy storage at low-speed was used to solve the low efficiency problem of direct-drive wave power generation system based on the fully enclosed oscilla- ting floating wave power generation system. The control of integrated maximum power acquisition was studied com- bining with passivity-based control. In order to avoid the fluctuation and shock phenomena in the process of sub- section control,the energy trajectory of the switching process was planned by using the differential smoothing theo- ry. The simulation results show that the application of subsection control strategy and the differential smoothing theory can not only improve the power generation efficiency but also avoid shock impact.

Key words: wave power generation, differential smoothing, trajectory planning, passivity-based control

中图分类号: