华南理工大学学报(自然科学版) ›› 2024, Vol. 52 ›› Issue (3): 141-150.doi: 10.12141/j.issn.1000-565X.230167

• 电子、通信与自动控制 • 上一篇    

单绳缠绕式矿井提升机制动瞬态冲击抑制策略

解辉1 沈刚2 刘东3 汤裕1 朱真才1   

  1. 1.中国矿业大学 机电工程学院, 江苏 徐州 221000
    2.安徽理工大学 机电工程学院, 安徽 淮南 232000
    3.中国船舶集团有限公司 第七一三研究所, 河南 郑州 450015
  • 收稿日期:2023-03-30 出版日期:2024-03-25 发布日期:2023-06-20
  • 作者简介:解辉(1995-),男,博士生,主要从事矿井提升机制动控制技术研究。E-mail: hui13685131204@163.com
  • 基金资助:
    国家自然科学基金资助项目(U21A20125,52175068,51805532);江苏高校优势学科建设工程项目

Braking Transient Impact Suppression Strategy for Single Rope Winding Mine Hoist

XIE Hui1 SHEN Gang2 LIU Dong3 TANG YuZHU Zhencai1   

  1. 1.School of Mechanical and Electrical Engineering,China University of Mining and Technology,Xuzhou 221000,Jiangsu,China
    2.School of Mechanical and Electrical Engineering,Anhui University of Technology,Huainan 232000,Anhui,China
    3.713th Research Institute of China Shipbuilding Industry Group Co. ,Ltd,Zhengzhou 450015,Henan,China
  • Received:2023-03-30 Online:2024-03-25 Published:2023-06-20
  • About author:解辉(1995-),男,博士生,主要从事矿井提升机制动控制技术研究。E-mail: hui13685131204@163.com
  • Supported by:

    the National Natural Science Foundation of China(U21A201255217506851805532)

摘要:

在矿井提升机的制动控制中,制动瞬态冲击是影响矿井提升机安全可靠运行的关键问题。由于受到技术和经济成本的制约,目前包含贴闸/压紧的制动过程全程采用力闭环控制,这不可避免地导致闸瓦与闸盘刚性接触时的制动力瞬态冲击问题。针对矿井提升机制动瞬态冲击问题,文中提出了一种基于滞回切换原理的混合贴闸/压紧制动控制策略。首先,分别利用非奇异快速终端滑模控制和反步控制设计了贴闸和压紧控制器;其次,为达到快速贴闸的目的,设计了一种基于离散积分器的在线贴闸轨迹再规划方法,有效地减小了制动器贴闸时间;然后,为实现由贴闸控制到压紧控制的安全切换,利用滞回切换原理,制定了混合贴闸/压紧控制稳态切换策略,大大减小了制动力瞬态冲击;最后,为验证提出方法的有效性,选择传统全程力闭环控制策略C1与混合贴闸/压紧直接切换策略C2作为对比方法,在单绳缠绕式提升试验台进行了对比实验,从贴闸时间、制动力最大跟踪误差和提升钢丝绳最大张力3个方面对实验结果进行了分析。实验结果表明:相较于C1控制策略,提出制动控制策略的贴闸时间缩短了64.5%,钢丝绳张力峰值减小了41 N;相较于C2控制策略,提出制动控制策略的制动力冲击减小了90.3%,钢丝绳张力峰值减小了88 N。上述结果表明本文提出的方法能有效改善制动瞬态冲击,减小制动空动时间,提高制动系统安全性,同时本研究也为一类需要混合力/位置控制的电液伺服系统提供了一种有效的解决方法。

关键词: 矿井提升机制动系统, 瞬态冲击, 非线性控制, 混合力/位置控制, 约束轨迹规划

Abstract:

In the braking control for mine hoists, braking transient impact is a key issue affecting the operational safety and reliability of mine hoists. Currently, due to the constraints of technology and economic costs, the braking process, including shoe-approaching and braking control, adopts force closed-loop control mode, which inevitably leads to the transient impact of braking pressure when the brake shoe is in rigid contact with the brake disc. Aiming at the problem of transient braking impact for mine hoists, this paper designed a hybrid shoe-approaching and braking control strategy by using the hysteretic-relay-based switching principle. Firstly, the non-singular fast terminal sliding mode control and backstepping control were adopted to design the controller for the shoe-approaching and braking system, respectively. Secondly, in order to achieve the purpose of fast shoe-approaching, it developed an online shoe-approaching trajectory re-planning method based on discrete integrator, which effectively reduces the shoe-approaching time of the system. Then, by using of the hysteretic switching principle, it developed an autonomous switching strategy from shoe-approaching control to braking control, which greatly reduces the transient impact of braking pressure. Finally, to verify the effectiveness of the proposed method, the traditional full-stroke pressure closed-loop control strategy C1 and hybrid shoe-approaching/pressure control strategy with direct switching C2 were selected as comparison methods, and comparative experiments were conducted on a single-rope winding hoisting test bench. The experimental results were analyzed from three aspects: braking time, maximum tracking error of braking force, and maximum tension of hoisting wire rope. The experimental results indicate that, compared with the C1 control strategy, the proposed braking control strategy reduces the braking time by 64.5% and the peak tension of the wire rope by 41 N. Compared with the C2 control strategy, the proposed braking control strategy reduces the braking force impact by 90.3% and the peak tension of the wire rope by 88 N. These results demonstrate that the proposed approach effectively improves the transient impact of braking, reduces shoe-approaching time, and improves the safety of the braking system. This study also provides an effective solution for a class of electro-hydraulic servo systems that require mixed force/position control.

Key words: mine hoist braking system, transient impact, nonlinear control, mixed force/position control, constrained trajectory planning

中图分类号: