Journal of South China University of Technology(Natural Science Edition) ›› 2022, Vol. 50 ›› Issue (12): 71-79.doi: 10.12141/j.issn.1000-565X.220180
Special Issue: 2022年计算机科学与技术
• Computer Science & Technology • Previous Articles Next Articles
CAI Xiaodong ZENG Zhiyang
Received:
2022-04-06
Online:
2022-12-25
Published:
2022-07-15
Contact:
蔡晓东(1971-),男,博士,研究员,主要从事大数据挖掘和自然语言处理研究。
E-mail:caixiaodong@guet.edu.cn
About author:
蔡晓东(1971-),男,博士,研究员,主要从事大数据挖掘和自然语言处理研究。
Supported by:
CLC Number:
CAI Xiaodong, ZENG Zhiyang . AFGSRec: A Social Recommendation Model Based on Adaptive Fusion of Global Collaborative Features[J]. Journal of South China University of Technology(Natural Science Edition), 2022, 50(12): 71-79.
Table 2
Comparison of experimental results among four models with different values of K"
K | 模型 | Gowalla | Delicious | ||
---|---|---|---|---|---|
HR/% | MRR/% | HR/% | MRR/% | ||
10 | SR-GNN | 41.31 | 22.39 | 37.01 | 19.57 |
DGRec | 42.18 | 23.04 | 37.78 | 20.07 | |
SERec | 46.01 | 25.14 | 40.02 | 21.29 | |
AFGSRec | 46.89 | 26.41 | 41.00 | 22.32 | |
20 | SR-GNN | 49.31 | 22.94 | 45.74 | 20.20 |
DGRec | 49.95 | 23.58 | 47.36 | 20.73 | |
SERec | 53.72 | 25.67 | 49.53 | 21.98 | |
AFGSRec | 54.34 | 26.91 | 50.12 | 22.93 |
Table 3
Validity experimental results of each component"
K | 模型 | Gowalla | Delicious | ||
---|---|---|---|---|---|
HR/% | MRR/% | HR/% | MRR/% | ||
10 | AFGSRec-wSPI | 46.31 | 26.02 | 40.49 | 22.09 |
AFGSRec-wAFC | 46.43 | 26.18 | 40.28 | 21.91 | |
AFGSRec-wCYC | 46.22 | 25.39 | 40.58 | 22.10 | |
AFGSRec | 46.89 | 26.41 | 41.00 | 22.32 | |
20 | AFGSRec-wSPI | 53.83 | 26.03 | 49.70 | 22.52 |
AFGSRec-wAFC | 53.74 | 26.33 | 49.71 | 22.57 | |
AFGSRec-wCYC | 53.55 | 25.87 | 49.81 | 22.60 | |
AFGSRec | 54.34 | 26.91 | 50.12 | 22.93 |
1 | WANG S, HU L, WANG Y,et al .Sequential recommender systems:challenges,progress and prospects [C]∥ Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence Survey Track.Macao:Morgan Kaufmann,2019:6332-6338. |
2 | HIDASI B, KARATZOGLOU A, BALTRUNAS L,et al .Session-based recommendations with recurrent neural networks [C]∥ Proceedings of the 4th International Confe-rence on Learning Representations.San Juan:OpenReview.net,2016:1-10. |
3 | CHO K, MERRIENBOER B V, GULCEHRE C,et al .Learning phrase representations using RNN encoder-decoder for statistical machine translation [C]∥ Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing.Doha:Association for Computational Linguistics,2014:1724-1734. |
4 | BAHDANAU D, CHO K, BENGIO Y .Neural machine translation by jointly learning to align and translate [C]∥ Proceedings of the 3rd International Conference on Lear-ning Representations.San Diego:OpenReview.net,2015:1-15. |
5 | LI J, REN P, CHEN Z,et al .Neural attentive session-based recommendation [C]∥ Proceedings of the 2017 ACM Conference on Information and Knowledge Management.Singapore:ACM,2017:1419-1428. |
6 | REN P, CHEN Z, LI J,et al .RepeatNet:a repeat aware neural recommendation machine for session-based recommendation [C]∥ Proceedings of the 33rd AAAI Conference on Artificial Intelligence.Honolulu:AAAI,2019:4806-4813. |
7 | JI W, WANG K, WANG X,et al .Sequential recommender via time-aware attentive memory network [C]∥ Proceedings of the 29th ACM International Conference on Information and Knowledge Management.New York:ACM,2020:565-574. |
8 | ZHANG J, MA C, MU X,et al .Recurrent convolutional neural network for session-based recommendation [J].Neurocomputing,2021,437:157-167. |
9 | WU S, TANG Y, ZHU Y,et al .Session-based recommendation with graph neural networks [C]∥ Proceedings of the 33rd AAAI Conference on Artificial Intelligence.Honolulu:AAAI,2019:346-353. |
10 | LI Y, ZEMEL R, BROCKSCHMIDT M,et al .Gated graph sequence neural networks [C]∥ Proceedings of the 4th International Conference on Learning Representations.San Juan:OpenReview.net,2016:11-30. |
11 | WANG Z, WEI W, CONG G,et al .Global context enhanced graph neural networks for session-based re-commendation [C]∥ Proceedings of the 43rd International ACM SIGIR Conference on Research and Deve-lopment in Information Retrieval.New York:ACM,2020:169-178. |
12 | ZHANG C, SONG D, HUANG C,et al .Heterogeneous graph neural network [C]∥ Proceedings of the 25th ACM SIGKDD International Conference on Know-ledge Discovery & Data Mining.Anchorage:ACM,2019:793-803. |
13 | XU L, XI W D, WANG C D .Session-based recommendation with heterogeneous graph neural networks [C]∥ Proceedings of 2021 International Joint Confe-rence on Neural Networks.Shenzhen:IEEE,2021:1-8. |
14 | PANG Y, WU L, SHEN Q,et al .Heterogeneous global graph neural networks for personalized session-based recommendation [C]∥ Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining.New York:ACM,2022:775-783. |
15 | SONG W, XIAO Z, WANG Y,et al .Session-based social recommendation via dynamic graph attention networks [C]∥ Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining.Melbourne:ACM,2019:555-563. |
16 | GU P, HAN Y, GAO W,et al .Enhancing session-based social recommendation through item graph embedding and contextual friendship modeling[J].Neurocomputing,2021,419:190-202. |
17 | CHEN T, WONG R C W .An efficient and effective framework for session-based social recommendation [C]∥ Proceedings of the Forteenth ACM International Conference on Web Search and Data Mining.New York:ACM,2021:400-408. |
18 | MA C, KANG P, LIU X .Hierarchical gating networks for sequential recommendation [C]∥ Proceedings of the 25th ACM SIGKDD International Conference on Know-ledge Discovery & Data Mining.Anchorage:ACM,2019:825-833. |
19 | SMITH L N .Cyclical learning rates for training neural networks [C]∥ Proceedings of 2017 IEEE Winter Conference on Applications of Computer Vision.Santa Rosa:IEEE,2017:464-472. |
20 | WANG C, ZHU Y, LIU H,et al .Enhancing user interest modeling with knowledge-enriched itemsets for sequential recommendation [C]∥ Proceedings of the 30th ACM International Conference on Information & Know-ledge Management.New York:ACM,2021:1889-1898. |
21 | YU F, ZHU Y, LIU Q,et al .TAGNN:target attentive graph neural networks for session-based recommendation [C]∥ Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval.New York:ACM,2020:1921-1924. |
22 | PAN Z, CAI F, CHEN W,et al .Star graph neural networks for session-based recommendation [C]∥ Proceedings of the 29th ACM International Conference on Information & Knowledge Management.New York:ACM,2020:1195-1204. |
23 | CHEN T, WONG R C W .Handling information loss of graph neural networks for session-based recommendation [C]∥ Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.New York:ACM,2020:1172-1180. |
24 | 宋美佳,贾鹤鸣,林志兴,等 .自适应学习率梯度下降的优化算法 [J].三明学院学报,2021,38(6):36-44. |
SONG Meijia, JIA Heming, LIN Zhixing,et al .Optimization research of gradient descent algorithm based on adaptive learning rate [J].Journal of Sanming University,2021,38(6):36-44. | |
25 | DAUPHIN Y, de VRIES H, BENGIO Y .Equilibrated adaptive learning rates for non-convex optimization [C]∥ Proceedings of the 28th International Conference on Neural Information Processing Systems.Cambridge:MIT Press,2015:1504-1512. |
[1] | . Dynamic Neighborhood Sampling for Social Recommendation [J]. Journal of South China University of Technology(Natural Science Edition), 2024, 52(2): 32-41. |
[2] | ZHAO Rongchao, WU Baili, CHEN Zhuyun, WEN Kairu, ZHANG Shaohui, LI Weihua. Graph Neural Network for Fault Diagnosis with Multi-Scale Time-Spatial Information Fusion Mechanism [J]. Journal of South China University of Technology(Natural Science Edition), 2023, 51(12): 42-52. |
[3] | XU Lunhui, YU Jiaxin, PEI Mingyang, et al. Repositioning Strategy for Ride-Hailing Vehicles Based on Geometric Road Network Structure and Reinforcement Learning [J]. Journal of South China University of Technology(Natural Science Edition), 2023, 51(10): 99-109. |
[4] | LU Yiqin, PAN Zhoushuang, ZHANG Yang, et al. Knowledge Graph Completion Method Based on Interactively Connected Graph Attention Network [J]. Journal of South China University of Technology(Natural Science Edition), 2022, 50(12): 13-19. |
[5] | DU Qiliang, XIANG Zhaoyi, TIAN Lianfang, et al. Two-Stream Adaptive Attention Graph Convolutional Networks for Action Recognition [J]. Journal of South China University of Technology(Natural Science Edition), 2022, 50(12): 20-29. |
[6] | CAI Xiaodong HONG Tao CAO Yi. Recommendation Model Based on Polarization Relation Representation and Low-Dimensional Data Association Learning [J]. Journal of South China University of Technology (Natural Science Edition), 2022, 50(1): 122-131. |
[7] | GU Wanrong, XIE Xianfen, ZHANG Ziye, et al. Collaborative Score Prediction Method for Non-Random Missing Data [J]. Journal of South China University of Technology (Natural Science Edition), 2021, 49(1): 47-57. |
[8] | LIU Huiting, JI Qiang, LIU Huimin, et al. Joint Deep Recommendation Model Based on Double-Layer Attention Mechanism [J]. Journal of South China University of Technology (Natural Science Edition), 2020, 48(6): 97-105. |
[9] | ZHANG Ziye, LI Mingchang, LIANG Lingrui, et al. Improved Transfer Learning Algorithm Based on Cross-domain in Recommendation System [J]. Journal of South China University of Technology (Natural Science Edition), 2020, 48(11): 99-106. |
[10] | Du Qing Wang Qi-xuan Huang Dong-ping Cai Yi Wang Tao Min Hua-qing. Question Answering System Based on Social Relationship and Recommendation of the Best Answerer [J]. Journal of South China University of Technology (Natural Science Edition), 2015, 43(1): 132-139. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 72
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 969
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||