1 |
International Energy Agency .Transition to sustainable buildings:strategies and opportunities to 2050[M].Paris:Organization for Economic,2013.
|
2 |
刘艳华 .暖通空调节能技术[M].北京:机械工业出版社,2015:134-216.
|
3 |
张严 .基于混杂系统的中央空调冷冻水泵控制策略研究[D].广州:华南理工大学,2018.
|
4 |
杨龙,张沈习,程浩忠,等 .区域低碳综合能源系统规划关键技术与挑战[J].电网技术,2022,46(9):3290-3303.
|
|
YANG Long, ZHANG Shenxi, CHENG Haozhong,et al .Regional low-carbon integrated energy system planning:key technologies and challenges[J].Power System Technology,2022,46(9):3290-3303.
|
5 |
HAO Y, LIU G .Evaluation of nine heuristic algorithms with data-intensive jobs and computing-intensive jobs in a dynamic environment[J].IET Software,2015,9(1):7-16.
|
6 |
付龙海,李蒙 .基于PID神经网络解耦控制的变风量空调系统[J].西南交通大学学报,2005,40(1):13-17.
|
|
FU Long-hai, LI Meng .Variable-air-volume air-conditioning system based on PID-ANN decoupling control technology[J].Journal of Southwest Jiaotong University,2005,40(1):13-17.
|
7 |
AFRAM A, JANABI-SHARIFI F, FUNG A S,et al .Artificial neural network (ANN) based model predictive control (MPC) and optimization of HVAC systems:a state of the art review and case study of a residential HVAC system[J].Energy and Buildings,2017,141:96-113.
|
8 |
YU L, QIN S, ZHANG M,et al .A review of deep reinforcement learning for smart building energy management[J].IEEE Internet of Things Journal,2021,8(15):12046-12063.
|
9 |
NAGARATHINAM S, MENON V, VASAN A,et al .MARCO:multi-agent reinforcement learning based control of building HVAC systems[C]∥ Proceedings of the 11 th ACM International Conference on Future Energy Systems.New York:ACM,2020:57-67.
|
10 |
WEI T, WANG Y, ZHU Q .Deep reinforcement lear-ning for building HVAC control[C]∥ Proceedings of the 54 th Annual Design Automation Conference.Austin:IEEE,2017:1-6.
|
11 |
闫军威,黄琪,周璇 .基于DDPG的冷源系统节能优化控制策略[J].控制与决策,2021,36(12):2955-2963.
|
|
YAN Jun-wei, HUANG Qi, ZHOU Xuan .Energy-saving optimization control strategy of cold source system based on DDPG algorithm[J].Control and Decision,2021,36(12):2955-2963.
|
12 |
闫军威,黄琪,周璇 .基于Double-DQN的中央空调系统节能优化运行[J].华南理工大学学报(自然科学版),2019,47(1):135-144.
|
|
YAN Junwei, HUANG Qi, ZHOU Xuan .Energy-saving optimization operation of central air-conditioning system based on double-DQN algorithm[J].Journal of South China University of Technology(Natural Science Edition),2019,47(1):135-144.
|
13 |
黄志刚,刘全,张立华,等 .深度分层强化学习研究与发展[J].软件学报,2023,34(2):733-760.
|
|
HUANG Zhigang, LIU Quan, ZHANG Lihua,et al .Research and development on deep hierarchical reinforcement learning[J].Journal of Software,2023,34(2):733-760.
|
14 |
YE X, YANG Y .Hierarchical and partially observable goal-driven policy learning with goals relational graph[C]∥ Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Nashville:IEEE,2021:14101-14110.
|
15 |
DING W, LI S, QIAN H,et al .Hierarchical reinforcement learning framework towards multi-agent navigation[C]∥ Proceedings of 2018 IEEE International Confe-rence on Robotics and Biomimetics.Kuala Lumpur:IEEE,2018:237-242.
|
16 |
DUAN J, LI S E, GUAN Y,et al .Hierarchical reinfor-cement learning for self‐driving decision‐making without reliance on labelled driving data[J].IET Intelligent Transport Systems,2020,14(5):297-305.
|
17 |
PERERA A T D, KAMALARUBAN P .Applications of reinforcement learning in energy systems[J].Renewable and Sustainable Energy Reviews,2021,137:110618/1-22.
|
18 |
赵铭慧,张雪波,郭宪,等 .基于分层强化学习的通用装配序列规划算法[J].控制与决策,2022,37(4):861-870.
|
|
ZHAO Ming-hui, ZHANG Xue-bo, GUO Xian,et al .A general assembly sequence planning algorithm based on hierarchical reinforcement learning[J].Control and Decision,2022,37(4):861-870.
|
19 |
SUTTON R S, PRECUP D, SINGH S .Between MDPs and semi-MDPs:a framework for temporal abstraction in reinforcement learning[J].Artificial Intelligence,1999,112:181-211.
|
20 |
P-L BACON, HARB J, PRECUP D .The option-critic architecture[C]∥ Proceedings of the 31 st AAAI Confe-rence on Artificial Intelligence.San Francisco:AAAI,2017:1726-1734.
|
21 |
WANG Z, SCHAUL T, HESSEL M,et al .Dueling network architectures for deep reinforcement learning[C]∥ Proceedings of the 33 rd International Conference on Machine Learning.New York:JMLR.org,2016:1995-2003.
|