1 |
LEI Y, LI N, GONTARZ S,et al .A model-based method for remaining useful life prediction of machinery[J].IEEE Transactions on Reliability,2016,65(3):1314-1326.
|
2 |
REN L, DONG J, WANG X,et al .A data-driven auto-CNN-LSTM prediction model for lithium-ion battery remaining useful life[J].IEEE Transactions on Industrial Informatics,2021,17(5):3478-3487.
|
3 |
MA M, MAO Z .Deep-convolution-based LSTM network for remaining useful life prediction[J].IEEE Transactions on Industrial Informatics,2021,17(3):1658-1667.
|
4 |
REN L, LIU Y, WANG X,et al .Cloud-edge-based lightweight temporal convolutional networks for remaining useful life prediction in IIoT[J].IEEE Internet of Things Journal,2020,8(16):12578-12587.
|
5 |
WANG B, LEI Y, LI N,et al .Deep separable convolutional network for remaining useful life prediction of machinery[J].Mechanical Systems and Signal Processing,2019,134:106330/1-18.
|
6 |
PHAM H T, YANG B S, NGUYEN T T .Machine performance degradation assessment and remaining useful life prediction using proportional hazard model and support vector machine[J].Mechanical Systems and Signal Processing,2016,32:320-330.
|
7 |
LIU D, ZHOU J, PAN D,et al .Lithium-ion battery remaining useful life estimation with an optimized relevance vector machine algorithm with incremental learning[J].Measurement, 2015,63:143-151.
|
8 |
KANG Z, CATAL C, TEKINERDOGAN B .Remaining useful life (RUL) prediction of equipment in production lines using artificial neural networks[J].Sensors,2021,21(3):932-951.
|
9 |
ZHU J, CHEN N, PENG W .Estimation of bearing remaining useful life based on multiscale convolutional neural network[J].IEEE Transactions on Industrial Electronics,2018,66(4):3208-3216.
|
10 |
HUANG C G, HUANG H Z, LI Y F,et al .A novel deep convolutional neural network-bootstrap integrated method for RUL prediction of rolling bearing[J].Journal of Manufacturing Systems,2021,61:757-772.
|
11 |
GUO L, LI N, JIA F,et al .A recurrent neural network based health indicator for remaining useful life prediction of bearings[J].Neurocomputing,2017,240:98-109.
|
12 |
JAYASINGHE L, SAMARASINGHE T, YUENY C,et al .Temporal convolutional memory networks for remaining useful life estimation of industrial machinery[C]∥Proceedings of the 2019 IEEE International Conference on Industrial Technology (ICIT).Shanghai:IEEE,2019:915-920.
|
13 |
LI X, ZHANG W, DING Q .Deep learning-based remaining useful life estimation of bearings using multi-scale feature extraction[J].Reliability Engineering & System Safety,2019,182:208-218.
|
14 |
WANG X, WANG T, MING A,et al .Deep spatiotemporal convolutional-neural-network-based remaining useful life estimation of bearings[J].Chinese Journal of Mechanical Engineering,2021,34(1):1-15.
|
15 |
MA M, MAO Z .Deep wavelet sequence-based gated recurrent units for the prognosis of rotating machinery[J].Structural Health Monitoring,2021,20:1794-1804.
|
16 |
CHEN Y, PENG G, ZHU Z,et al .A novel deep learning method based on attention mechanism for bearing remaining useful life prediction[J].Applied Soft Computing,2020,86:105919/1-32.
|
17 |
温海茹,陈雯柏 .一种基于DCNN-LSTM混合模型的RUL预测方法[J].兵器装备工程学报,2020,41(12):87-92.
|
|
WEN Hairu, CHEN Wenbai .RUL prediction method based on DCNN-LSTM hybrid model[J].Journal of Ordnance Equipment Engineering,2020,41(12):87-92.
|
18 |
QIN Y, CHEN D, XIANG S,et al .Gated dual attention unit neural networks for remaining useful life prediction of rolling bearings[J].IEEE Transactions on Industrial Informatics,2020,17(9):6438-6447.
|
19 |
XIANG S, QIN Y, LUO J,et al .Spatiotemporally multi-differential processing deep neural network and its application to equipment remaining useful life prediction[J].IEEE Transactions on Industrial Informatics,2021,18(10):7230-7239.
|
20 |
WANG B, LEI Y, YAN T,et al .Recurrent convolutional neural network:A new framework for remaining useful life prediction of machinery[J].Neurocomputing,2020,379:117-129.
|
21 |
LEI Y, WANG W, YEN T,et al .Residual convolution LSTM network for machines remaining useful life prediction and uncertainty quantification[J].Journal of Dynamics,Monitoring and Diagnostics,2021,1(1):2-8.
|
22 |
LI B, TANG B, DENG L,et al .Self-attention ConvLSTM and its application in RUL prediction of rolling bearings[J].IEEE Transactions on Instrumentation and Measurement,2021,70:1-11.
|
23 |
ZENG F, LI Y, JIANG Y,et al .A deep attention residual neural network-based remaining useful life prediction of machinery[J].Measurement,2021,181:109642/1-12.
|
24 |
LIAO Y, ZENG X, LI W .Wavelet transform based convolutional neural network for gearbox fault classification[C]∥Proceedings of the 2017 Prognostics and System Health Management Conference (PHM-Harbin).Harbin:IEEE,2017:1-6.
|
25 |
BAI S, KOLTER J Z, KOLTUN V .An empirical evaluation of generic convolutional and recurrent networks for sequence modeling[EB/OL].(2018-03-04)[2022-12-12]..
|
26 |
SHI X, CHEN Z, WANG H,et al .Convolutional LSTM network:A machine learning approach for precipitation nowcasting[J].Advances in Neural Information Processing Systems,2015,28:1-9.
|
27 |
WANG Y, ZHANG J, ZHU H,et al .Memory in memory:A predictive neural network for learning higher-order non-stationarity from spatiotemporal dynamics[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach,CA:IEEE,2019:9154-9162.
|
28 |
NECTOUX P, GOURIVEAU R, MEDJAHER K,et al .PRONOSTIA:An experimental platform for bearings accelerated degradation tests[C]∥Proceedings of the IEEE International Conference on Prognostics and Health Management.Beijing:IEEE,2012:23-25.
|
29 |
CAO Y, DING Y, JIA M,et al .A novel temporal convolutional network with residual self-attention mechanism for remaining useful life prediction of rolling bearings[J].Reliability Engineering & System Safety,2021,215:107813/1-13.
|
30 |
LUO J, ZHANG X .Convolutional neural network based on attention mechanism and Bi-LSTM for bearing remaining life prediction[J].Applied Intelligence,2022,52(1):1076-1091.
|
31 |
雷亚国,韩天宇,王彪,等 .XJTU-SY滚动轴承加速寿命试验数据集解读[J].机械工程学报,2019,55(16):1-6.
|
|
LEI Yaguo, HAN Tianyu, WANG Biao,et al .XJTU-SY rolling element bearing accelerated life test datasets:A tutorial[J].Journal of Mechanical Engineering,2019,55(16):1-6.
|