Journal of South China University of Technology(Natural Science Edition) ›› 2023, Vol. 51 ›› Issue (9): 69-81.doi: 10.12141/j.issn.1000-565X.220809
• Computer Science & Technology • Previous Articles Next Articles
LI Fang GUO Weisen ZHANG Ping LUO Long
Received:
2022-12-12
Online:
2023-09-25
Published:
2023-03-31
Contact:
李方(1981-),女,博士,副教授,主要从事智能制造装备研究。
E-mail:cslifang@scut.edu.cn
About author:
李方(1981-),女,博士,副教授,主要从事智能制造装备研究。
Supported by:
CLC Number:
LI Fang, GUO Weisen, ZHANG Ping, et al.. Prediction Technique for Remaining Useful Life of Bearing Based on Spatial-Temporal Dual Cell State[J]. Journal of South China University of Technology(Natural Science Edition), 2023, 51(9): 69-81.
1 | LEI Y, LI N, GONTARZ S,et al .A model-based method for remaining useful life prediction of machinery[J].IEEE Transactions on Reliability,2016,65(3):1314-1326. |
2 | REN L, DONG J, WANG X,et al .A data-driven auto-CNN-LSTM prediction model for lithium-ion battery remaining useful life[J].IEEE Transactions on Industrial Informatics,2021,17(5):3478-3487. |
3 | MA M, MAO Z .Deep-convolution-based LSTM network for remaining useful life prediction[J].IEEE Transactions on Industrial Informatics,2021,17(3):1658-1667. |
4 | REN L, LIU Y, WANG X,et al .Cloud-edge-based lightweight temporal convolutional networks for remaining useful life prediction in IIoT[J].IEEE Internet of Things Journal,2020,8(16):12578-12587. |
5 | WANG B, LEI Y, LI N,et al .Deep separable convolutional network for remaining useful life prediction of machinery[J].Mechanical Systems and Signal Processing,2019,134:106330/1-18. |
6 | PHAM H T, YANG B S, NGUYEN T T .Machine performance degradation assessment and remaining useful life prediction using proportional hazard model and support vector machine[J].Mechanical Systems and Signal Processing,2016,32:320-330. |
7 | LIU D, ZHOU J, PAN D,et al .Lithium-ion battery remaining useful life estimation with an optimized relevance vector machine algorithm with incremental learning[J].Measurement, 2015,63:143-151. |
8 | KANG Z, CATAL C, TEKINERDOGAN B .Remaining useful life (RUL) prediction of equipment in production lines using artificial neural networks[J].Sensors,2021,21(3):932-951. |
9 | ZHU J, CHEN N, PENG W .Estimation of bearing remaining useful life based on multiscale convolutional neural network[J].IEEE Transactions on Industrial Electronics,2018,66(4):3208-3216. |
10 | HUANG C G, HUANG H Z, LI Y F,et al .A novel deep convolutional neural network-bootstrap integrated method for RUL prediction of rolling bearing[J].Journal of Manufacturing Systems,2021,61:757-772. |
11 | GUO L, LI N, JIA F,et al .A recurrent neural network based health indicator for remaining useful life prediction of bearings[J].Neurocomputing,2017,240:98-109. |
12 | JAYASINGHE L, SAMARASINGHE T, YUENY C,et al .Temporal convolutional memory networks for remaining useful life estimation of industrial machinery[C]∥Proceedings of the 2019 IEEE International Conference on Industrial Technology (ICIT).Shanghai:IEEE,2019:915-920. |
13 | LI X, ZHANG W, DING Q .Deep learning-based remaining useful life estimation of bearings using multi-scale feature extraction[J].Reliability Engineering & System Safety,2019,182:208-218. |
14 | WANG X, WANG T, MING A,et al .Deep spatiotemporal convolutional-neural-network-based remaining useful life estimation of bearings[J].Chinese Journal of Mechanical Engineering,2021,34(1):1-15. |
15 | MA M, MAO Z .Deep wavelet sequence-based gated recurrent units for the prognosis of rotating machinery[J].Structural Health Monitoring,2021,20:1794-1804. |
16 | CHEN Y, PENG G, ZHU Z,et al .A novel deep learning method based on attention mechanism for bearing remaining useful life prediction[J].Applied Soft Computing,2020,86:105919/1-32. |
17 | 温海茹,陈雯柏 .一种基于DCNN-LSTM混合模型的RUL预测方法[J].兵器装备工程学报,2020,41(12):87-92. |
WEN Hairu, CHEN Wenbai .RUL prediction method based on DCNN-LSTM hybrid model[J].Journal of Ordnance Equipment Engineering,2020,41(12):87-92. | |
18 | QIN Y, CHEN D, XIANG S,et al .Gated dual attention unit neural networks for remaining useful life prediction of rolling bearings[J].IEEE Transactions on Industrial Informatics,2020,17(9):6438-6447. |
19 | XIANG S, QIN Y, LUO J,et al .Spatiotemporally multi-differential processing deep neural network and its application to equipment remaining useful life prediction[J].IEEE Transactions on Industrial Informatics,2021,18(10):7230-7239. |
20 | WANG B, LEI Y, YAN T,et al .Recurrent convolutional neural network:A new framework for remaining useful life prediction of machinery[J].Neurocomputing,2020,379:117-129. |
21 | LEI Y, WANG W, YEN T,et al .Residual convolution LSTM network for machines remaining useful life prediction and uncertainty quantification[J].Journal of Dynamics,Monitoring and Diagnostics,2021,1(1):2-8. |
22 | LI B, TANG B, DENG L,et al .Self-attention ConvLSTM and its application in RUL prediction of rolling bearings[J].IEEE Transactions on Instrumentation and Measurement,2021,70:1-11. |
23 | ZENG F, LI Y, JIANG Y,et al .A deep attention residual neural network-based remaining useful life prediction of machinery[J].Measurement,2021,181:109642/1-12. |
24 | LIAO Y, ZENG X, LI W .Wavelet transform based convolutional neural network for gearbox fault classification[C]∥Proceedings of the 2017 Prognostics and System Health Management Conference (PHM-Harbin).Harbin:IEEE,2017:1-6. |
25 | BAI S, KOLTER J Z, KOLTUN V .An empirical evaluation of generic convolutional and recurrent networks for sequence modeling[EB/OL].(2018-03-04)[2022-12-12].. |
26 | SHI X, CHEN Z, WANG H,et al .Convolutional LSTM network:A machine learning approach for precipitation nowcasting[J].Advances in Neural Information Processing Systems,2015,28:1-9. |
27 | WANG Y, ZHANG J, ZHU H,et al .Memory in memory:A predictive neural network for learning higher-order non-stationarity from spatiotemporal dynamics[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach,CA:IEEE,2019:9154-9162. |
28 | NECTOUX P, GOURIVEAU R, MEDJAHER K,et al .PRONOSTIA:An experimental platform for bearings accelerated degradation tests[C]∥Proceedings of the IEEE International Conference on Prognostics and Health Management.Beijing:IEEE,2012:23-25. |
29 | CAO Y, DING Y, JIA M,et al .A novel temporal convolutional network with residual self-attention mechanism for remaining useful life prediction of rolling bearings[J].Reliability Engineering & System Safety,2021,215:107813/1-13. |
30 | LUO J, ZHANG X .Convolutional neural network based on attention mechanism and Bi-LSTM for bearing remaining life prediction[J].Applied Intelligence,2022,52(1):1076-1091. |
31 | 雷亚国,韩天宇,王彪,等 .XJTU-SY滚动轴承加速寿命试验数据集解读[J].机械工程学报,2019,55(16):1-6. |
LEI Yaguo, HAN Tianyu, WANG Biao,et al .XJTU-SY rolling element bearing accelerated life test datasets:A tutorial[J].Journal of Mechanical Engineering,2019,55(16):1-6. |
[1] | SU Jindian, YU Shanshan, HONG Xiaobin. A Self-Supervised Pre-Training Method for Chinese Spelling Correction [J]. Journal of South China University of Technology(Natural Science Edition), 2023, 51(9): 90-98. |
[2] | LI Jiachun, LI Bowen, LIN Weiwei. AdfNet: An Adaptive Deep Forgery Detection Network Based on Diverse Features [J]. Journal of South China University of Technology(Natural Science Edition), 2023, 51(9): 82-89. |
[3] | GUO Enqiang, FU Xinsha. Dropped Object Detection Method Based on Feature Similarity Learning [J]. Journal of South China University of Technology(Natural Science Edition), 2023, 51(6): 30-41. |
[4] | ZHAO Jiandong, JIAO Lanxin, ZHAO Zhimin, et al. A Car-Following Model Driven by Combination of Theory and Data Considering Effects of Lane Change of Side Cars [J]. Journal of South China University of Technology(Natural Science Edition), 2023, 51(6): 10-19. |
[5] | GUO Hong, QIN Lichuang, SHI Minghui, et al. Influence of Coupling Factors on Characteristics of Mixed Lubrication Sliding Bearings [J]. Journal of South China University of Technology(Natural Science Edition), 2023, 51(5): 141-150. |
[6] | YE Feng, CHEN Biao, LAI Yizong. Contrastive Knowledge Distillation Method Based on Feature Space Embedding [J]. Journal of South China University of Technology(Natural Science Edition), 2023, 51(5): 13-23. |
[7] | LI Ying, WANG Bozong, HE Shuang, et al. Thickness Distribution of Low Stress Three-layer Bearing for Cam Lobe Hydraulic Motor [J]. Journal of South China University of Technology(Natural Science Edition), 2023, 51(11): 93-100. |
[8] | HOU Liwei, WANG Hengsheng, ZOU Haoran. Deep Learning-Based Prediction of Contact Force in the Process of Shoveling Up Glass Subtrate [J]. Journal of South China University of Technology(Natural Science Edition), 2022, 50(8): 71-81. |
[9] | KANG Lan, CHEN Zonglin, LIN Yiwei . Axial Compression Behavior of High-Strength Circular Steel Tube Confined High-Strength Steel Reinforced Concrete Short Columns [J]. Journal of South China University of Technology(Natural Science Edition), 2022, 50(7): 1-12. |
[10] | MO Jianwen, ZHU Yanqiao, YUAN Hua, et al. Incremental learning based on neuron regularization and resource releasing [J]. Journal of South China University of Technology(Natural Science Edition), 2022, 50(6): 71-79,90. |
[11] | LU Lu, ZHONG Wenyu, WU Xiaokun. Image tampering localization based on mutil-scale transformer [J]. Journal of South China University of Technology(Natural Science Edition), 2022, 50(6): 10-18. |
[12] | ZHANG Qin, HU Jiahui, REN Hailin. Intelligent Pushing Method and Experiment of Feeding Assistant Robot [J]. Journal of South China University of Technology(Natural Science Edition), 2022, 50(6): 111-120. |
[13] | SONG Xintao, WU Wei, YUAN Shihua. Mixed-lubrication Analysis of Journal Bearing Considering Wear and Turbulence [J]. Journal of South China University of Technology(Natural Science Edition), 2022, 50(6): 121-128. |
[14] | YANG Chunling, LING Xi, LÜ Zeyu. Feature-domain Multi-Hypothesis Prediction Reconstruction Neural Network for Compressed Video Sensing [J]. Journal of South China University of Technology(Natural Science Edition), 2022, 50(6): 80-90. |
[15] | WO Yan, LIANG Jiyun, HAN Guoqiang. A cross-modal face retrieval method based on metric learning [J]. Journal of South China University of Technology(Natural Science Edition), 2022, 50(6): 1-9. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 786
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 194
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||