Journal of South China University of Technology(Natural Science Edition) ›› 2025, Vol. 53 ›› Issue (5): 94-108.doi: 10.12141/j.issn.1000-565X.240439
• Computer Science & Technology • Previous Articles Next Articles
MA Jinlin1,2, JIU Zhiqing2, MA Ziping3, XIA Mingge2, ZHANG Kai2, CHENG Yexia4, MA Ruishi2
Received:
2024-09-02
Online:
2025-05-25
Published:
2024-12-02
Contact:
酒志青(2000—),女,硕士生,主要从事图像识别研究。
E-mail:2313795280@qq.com
About author:
马金林(1976—),男,博士,副教授,主要从事计算机视觉、图像识别、计算机图形学等研究。E-mail: 624160@qq.com
Supported by:
CLC Number:
MA Jinlin, JIU Zhiqing, MA Ziping, XIA Mingge, ZHANG Kai, CHENG Yexia, MA Ruishi. A Liver Tumor Image Segmentation Method Based on Multi-Scale Feature Fusion and Reconstruction Convolution[J]. Journal of South China University of Technology(Natural Science Edition), 2025, 53(5): 94-108.
Table 1
Performance comparison of models with different placement positions of low-rank reconstructive convolution (with a rank value of 8)"
实验 序号 | LRC使用位置和层级 | Dice系数/% | IoU值/% | 浮点运算 次数/1010 | 参数量/107 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
编码器 | 瓶颈层 | 解码器 | |||||||||||
Ⅰ | Ⅱ | Ⅲ | Ⅳ | Ⅰ | Ⅱ | Ⅲ | Ⅳ | ||||||
1 | — | — | — | — | — | — | — | — | — | 94.95 | 90.48 | 5.477 918 | 3.104 |
2 | a | a | a | a | 95.48 | 91.42 | 5.104 206 | 2.949 | |||||
3 | b | b | b | b | 95.31 | 91.08 | 4.511 551 | 2.791 | |||||
4 | b | b | b | b | b | 95.37 | 91.19 | 4.269 959 | 1.847 | ||||
5 | a | a | a | a | a | a | a | a | 95.40 | 91.22 | 3.171 471 | 2.322 | |
6 | b | b | b | b | b | b | b | b | 95.11 | 90.70 | 3.545 183 | 2.477 | |
7 | a+b | a+b | a+b | a+b | 95.20 | 90.91 | 2.578 815 | 2.164 | |||||
8 | a+b | 95.35 | 91.16 | 5.115 530 | 1.688 | ||||||||
9 | b | a | b | a | b | a | b | a | b | 95.04 | 90.58 | 3.061 999 | 1.408 |
10 | a+b | a+b | a+b | a+b | 95.24 | 90.93 | 3.303 591 | 1.976 |
Table 2
Influence of rank value on model performance"
实验序号 | 不同rank值下的Dice系数/% | 不同rank值下的IoU值/% | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2 | 4 | 8 | 16 | 32 | 2 | 4 | 8 | 16 | 32 | |||
2 | 95.03 | 95.22 | 95.48 | 95.38 | 95.11 | 90.58 | 90.91 | 91.42 | 91.25 | 90.78 | ||
3 | 95.01 | 95.16 | 95.31 | 95.09 | 95.08 | 90.54 | 90.82 | 91.08 | 90.68 | 90.67 | ||
4 | 95.12 | 95.21 | 95.37 | 95.27 | 94.96 | 90.71 | 90.88 | 91.19 | 91.03 | 90.47 | ||
5 | 94.96 | 95.10 | 95.40 | 95.13 | 95.14 | 90.52 | 90.73 | 91.22 | 90.74 | 90.79 | ||
6 | 94.36 | 94.74 | 95.11 | 94.85 | 94.73 | 89.35 | 90.03 | 90.70 | 90.25 | 90.02 | ||
8 | 95.14 | 95.07 | 95.35 | 95.32 | 95.39 | 90.79 | 90.86 | 91.16 | 91.10 | 91.24 |
Table 3
Results of ablation experiment"
消融实验方案 | Dice系数/% | IoU值/% | 浮点运算次数/1010 | 参数量/107 | ||
---|---|---|---|---|---|---|
MSFF | TSPP | KRS | ||||
— | — | — | 94.95 | 90.48 | 5.477 918 | 3.104 |
√ | 96.66 | 93.54 | 7.079 019 | 3.806 | ||
√ | 96.24 | 92.77 | 5.437 719 | 3.000 | ||
√ | 96.85 | 93.90 | 3.629 279 | 2.466 | ||
√ | √ | 97.16 | 94.50 | 7.038 820 | 3.703 | |
√ | √ | 97.11 | 94.38 | 3.962 792 | 2.517 | |
√ | √ | 97.31 | 94.78 | 5.230 380 | 3.168 | |
√ | √ | √ | 97.56 | 95.25 | 5.190 181 | 3.064 |
Table 4
Performance comparison of the proposed method with mainstream methods on LiTS2017 dataset"
方法 | 肝脏图像分割性能 | 肝肿瘤图像分割性能 | ||
---|---|---|---|---|
Dice系数/% | IoU值/% | Dice系数/% | IoU值/% | |
U-Net[ | 94.95 | 90.48 | 70.88 | 59.51 |
ResUNet[ | 95.54 | 91.50 | 79.61 | 67.30 |
AttentionUNet[ | 95.96 | 92.25 | 81.35 | 69.60 |
UNet++[ | 96.49 | 93.24 | 76.96 | 66.79 |
ResUNet++[ | 96.58 | 93.42 | 82.07 | 71.13 |
UNet3+[ | 96.75 | 93.76 | 78.44 | 68.62 |
MEWUNet[ | 97.28 | 94.74 | 88.26 | 79.66 |
SAR-UNet[ | 96.39 | 93.18 | 87.23 | 77.89 |
TransUNet[ | 96.87 | 94.13 | 82.77 | 70.91 |
MISSFormer[ | 97.32 | 94.77 | 89.43 | 81.02 |
文中方法 | 97.56 | 95.25 | 89.71 | 81.58 |
Table 5
Performance comparison of the proposed method with mainstream methods on 3DIRCADb dataset"
方法 | 肝脏图像分割性能 | 肝肿瘤图像分割性能 | ||
---|---|---|---|---|
Dice系数/% | IoU值/% | Dice系数/% | IoU值/% | |
U-Net[ | 95.46 | 91.63 | 72.55 | 58.41 |
ResUNet[ | 96.17 | 92.72 | 80.13 | 68.36 |
AttentionUNet[ | 96.38 | 93.13 | 81.17 | 70.54 |
UNet++[ | 96.78 | 93.85 | 82.11 | 72.30 |
ResUNet++[ | 96.69 | 93.68 | 82.31 | 71.89 |
UNet3+[ | 96.88 | 94.03 | 81.14 | 69.21 |
MEWUNet[ | 97.23 | 94.67 | 89.52 | 81.50 |
SAR-UNet[ | 96.86 | 94.03 | 87.42 | 78.35 |
TransUNet[ | 97.04 | 94.32 | 82.98 | 72.07 |
MISSFormer[ | 97.13 | 94.45 | 89.24 | 80.91 |
文中方法 | 97.63 | 95.39 | 89.62 | 81.63 |
Table 6
Comparison of computational and parameter complexity between of the proposed method and mainstream methods"
方法 | 浮点运算次数/109 | 参数量/107 |
---|---|---|
U-Net[ | 54.779 18 | 3.104 |
ResUNet[ | 56.431 21 | 3.156 |
AttentionUNet[ | 66.631 85 | 3.488 |
UNet++[ | 138.660 54 | 3.663 |
ResUNet++[ | 70.933 84 | 1.448 |
UNet3+[ | 199.742 46 | 2.697 |
MEWUNet[ | 40.520 58 | 13.889 |
SAR-UNet[ | 86.790 94 | 4.218 |
TransUNet[ | 24.677 27 | 9.323 |
MISSFormer[ | 7.254 04 | 3.545 |
文中方法 | 51.901 81 | 3.064 |
1 | RONNEBERGER O, FISCHER P, BROX T .U-Net:convolutional networks for biomedical image segmentation[C]∥Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015.Munich:Springer International Publishing,2015:234-241. |
2 | LV P, WANG J, ZHANG X,et al .Deep supervision and atrous inception-based U-Net combining CRF for automatic liver segmentation from CT[J].Scientific Reports,2022,12(1):16995/1-14. |
3 | GUO C, SZEMENYEI M, YI Y,et al .SA-UNet:spatial attention U-Net for retinal vessel segmentation[C]∥Proceedings of 2020 25th International Conference on Pattern Recognition.Milan:IEEE,2021:1236-1242. |
4 | CAI Z, XIN J, SHI P,et al .DSTUNet: UNet with efficient dense SWIN transformer pathway for medical image segmentation[C]∥Proceedings of 2022 IEEE 19th International Symposium on Biomedical Imaging.Kolkata:IEEE,2022:1-5. |
5 | KIRAN I, RAZA B, IJAZ A,et al .DenseRes-UNet: segmentation of overlapped/clustered nuclei from multi organ histopathology images[J].Computers in Bio-logy and Medicine,2022,143:105267/1-15. |
6 | ANSARI M Y, YANG Y, BALAKRISHNAN S,et al .A lightweight neural network with multiscale feature enhancement for liver CT segmentation[J].Scientific reports,2022,12(1):14153/1-12. |
7 | ÖZCAN F, UÇAN O N, KARAÇAM S,et al .Fully automatic liver and tumor segmentation from CT image using an AIM-Unet[J].Bioengineering,2023,10(2):215/1-21. |
8 | AMER A, LAMBROU T, YE X .MDA-Unet: a multi-scale dilated attention U-Net for medical image segmentation[J].Applied Sciences,2022,12(7):3676/1-18. |
9 | IBTEHAZ N, KIHARA D .ACC-UNet: a completely convolutional UNet model for the 2020s[C]∥Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention.Cham:Springer Nature Switzerland,2023:692-702. |
10 | KONAR D, BHATTACHARYYA S, GANDHI T K,et al .3-D quantum-inspired self-supervised tensor network for volumetric segmentation of medical images[J].IEEE Transactions on Neural Networks and Learning Systems,2024,35(8):10312-10325. |
11 | SELVAN R, DAM E B, PETERSEN J .Segmenting two-dimensional structures with strided tensor networks[C]∥Proceedings of the 27th International Conference on Information Processing in Medical ImagingVirtual Event:Springer International Publishing,2021:401-414. |
12 | DENTON E L, ZAREMBA W, BRUNA J,et al .Exploiting linear structure within convolutional networks for efficient evaluation[C]∥Proceedings of the Confe-rence on Advances in Neural Information Processing Systems.Montreal:MIT Press,2014:1269-1277. |
13 | CHENG Z, LI B, FAN Y,et al .A novel rank selection scheme in tensor ring decomposition based on reinforcement learning for deep neural networks[C]∥Proceedings of 2020 IEEE International Conference on Acoustics,Speech and Signal Processing (ICASSP).Barcelona:IEEE,2020:3292-3296. |
14 | LIU Y, NG M K .Deep neural network compression by tucker decomposition with nonlinear response[J].Knowledge-Based Systems,2022,241:108171/1-12. |
15 | FALASCHETTI L, MANONI L, TURCHETTI C .A low-rank CNN architecture for real-time semantic segmentation in visual slam applications[J].IEEE Open Journal of Circuits and Systems,2022,3:115-133. |
16 | WANG J, LI S, YU L,et al .SDPN: a slight dual-path network with local-global attention guided for medical image segmentation[J].IEEE Journal of Biomedical and Health Informatics,2023,27(6):2956-2967. |
17 | CHEN W, ZHU X, SUN R,et al .Tensor low-rank reconstruction for semantic segmentation[C]∥Proceedings of the 16th European Conference on Computer Vision (ECCV 2020).Glasgow:Springer International Publishing,2020:52-69. |
18 | FAN X, LU Y, HOU J,et al .DMC-UNet-based segmentation of lung nodules[J].IEEE Access,2023,11:3322437/1-18. |
19 | JHA D, SMEDSRUD P H, RIEGLER M A,et al .RseUNet++: an advanced architecture for medical ima-ge segmentation[C]∥Proceedings of 2019 IEEE International Symposium on Multi-Media.San Diego:IEEE,2019:225-2255. |
20 | WANG J, LV P, WANG H,et al .SAR-UNet:squeeze-and-excitation block and atrous spatial pyramid pooling based residual U-Net for automatic liver segmentation in computed tomography[J].Computer Me-thods and Programs in Biomedicine,2021,208:106268/1-16. |
21 | FAN T, WANG G, LI Y,et al .MA-Net: a multi-scale attention network for liver and tumor segmentation[J].IEEE Access,2020,8:179656-179665. |
22 | LI X, CHEN H, QI X,et al .H-DenseUNet:hybrid densely connected UNet for liver and tumor segmentation from CT volumes[J].IEEE transactions on Medical Imaging,2018,37(12):2663-2674. |
23 | SHAO Y, ZHOU K, ZHANG L .CSSNet: cascaded spatial shift network for multi-organ segmentation[J].Computers in Biology and Medicine,2024,170:107955/1-14. |
24 | LIANG B, TANG C, ZHANG W,et al .N-Net: an UNet architecture with dual encoder for medical image segmentation[J].Signal,Image and Video Processing,2023,17(6):3073-3081. |
25 | XIE J, ZHU R, WU Z,et al .FFUNet: a novel feature fusion makes strong decoder for medical image segmentation[J].IET Signal Processing,2022,16(5):501-514. |
26 | XIAO X, LIAN S, LUO Z,et al .Weighted ResUNet for high-quality retina vessel segmentation[C]∥Proceedings of 2018 9th International Conference on Information Technology in Medicine and Education.Hangzhou:IEEE,2018:327-331. |
27 | OKTAY O, SCHLEMPER J, FOLGOC L L,et al .AttentionUNet: learning where to look for the pancreas[EB/OL].(2018-04-11)[2024-08-30].. |
28 | ZHOU Z, RAHMAN SIDDIQUEE M M, TAJBAKHSH N,et al .UNet++: a nested U-Net architecture for medical image segmentation[C]∥Proceedings of the 4th International Workshop on Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support.Granada:Springer International Publishing,2018:3-11. |
29 | HUANG H, LIN L, TONG R,et al .UNet3+: a full-scale connected UNet for medical image segmentation[C]∥Proceedings of 2020 IEEE International Conference on Acoustics,Speech and Signal Processing.Barcelona:IEEE,2020:1055-1059. |
30 | RUAN J, XIE M, XIANG S,et al .MEWUNet: multi-axis representation learning in frequency domain for medical image segmentation[EB/OL].(2022-10-25)[2024-08-30].. |
31 | CHEN J, LU Y, YU Q,et al .TransUNet: transfor-mers make strong encoders for medical image segmentation[EB/OL].(2021-02-08)[2024-08-30].. |
32 | HUANG X, DENG Z, LI D,et al .MISSFormer: an effective transformer for 2d medical image segmentation[J].IEEE Transactions on Medical Imaging,2022,42(5):1484-1494. |
[1] | LIU Jianguo, FENG Yunjian, JI Guo, et al. Improved Stereo Matching Algorithm Based on PSMNet [J]. Journal of South China University of Technology (Natural Science Edition), 2020, 48(1): 60-69,83. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||