1 |
黄道平,刘乙奇,李艳 .软测量在污水处理过程中的研究与应用[J].化工学报,2011,62(1):1-9.
|
|
HUANG Daoping, LIU Yiqi, LI Yan .Soft sensor research and its application in wastewater treatment[J].CIESC Journal,2011,62(1):1-9.
|
2 |
GENG Z, CHEN Z, MENG Q,et al .Novel transformer based on gated convolutional neural network for dynamic soft sensor modeling of industrial processes[J].IEEE Transactions on Industrial Informatics,2021,18(3):1521-1529.
|
3 |
KADLEC P, GABRYS B, STRANDT S .Data-driven soft sensors in the process industry[J].Computers & Chemical Engineering,2009,33(4):795-814.
|
4 |
KAY S,KAY H, MOWBRAY M,et al .Integrating autoencoder and heteroscedastic noise neural networks for the batch process soft-sensor design[J].Industrial & Engineering Chemistry Research,2022,61(36):13559-13569.
|
5 |
李东,黄道平,许翀,等 .基于协同训练的集成自适应GPR-RVM多输出模型研究[J].华南理工大学学报(自然科学版),2021,49(6):100-108.
|
|
LI Dong, HUANG Daoping, XU Chong,et al .On integrated adaptive GPR-RVM multi-output model based on co-training algorithm[J].Journal of South China University of Technology (Natural Science Edition),2021,49(6):100-108.
|
6 |
YUAN X, LI L, WANG Y,et al .Deep learning for quality prediction of nonlinear dynamic processes with variable attention‐based long short‐term memory network[J].The Canadian Journal of Chemical Engineering,2020,98(6):1377-1389.
|
7 |
GENCAY R, LIU T .Nonlinear modelling and prediction with feedforward and recurrent networks[J].Physica D:Nonlinear Phenomena,1997,108(1/2):119-134.
|
8 |
杨马英,周芳芹,李军 .基于Elman神经网络的城市污水处理水质参数软测量[J].东南大学学报(自然科学版),2006,36(S1):119-123.
|
|
YANG Maying, ZHOU Fangqin, LI Jun .Soft sensing model for city wastewater treatment process parameter based on Elman neural network[J].Journal of Southeast University (Natural Science Edition),2006,36(S1):119-123.
|
9 |
关学忠,宋韬略,徐延海,等 .污水处理中BP神经网络与Elman神经网络的预测比较[J].自动化技术与应用,2014,33(10):1-3,25.
|
|
GUAN Xuezhong, SONG Taolue, XU Yanhai,et al .Comparison of prediction on BP neural networks and Elman neural networks in wastewater treatment[J].Techniques of Automation and Applications,2014,33(10):1-3,25.
|
10 |
WERBOS P J .Backpropagation through time:what it does and how to do it[J].Proceedings of the IEEE,1990,78(10):1550-1560.
|
11 |
HAGAN M T, MENHAJ M B .Training feedforward networks with the Marquardt algorithm[J].IEEE Transactions on Neural Networks,1994,5(6):989-993.
|
12 |
HOWARD B D, MARK H B, ORLANDO De J,et al .Neural network design[M].Stillwater:Oklahoma State University,2014:335-468.
|
13 |
ZHANG F, REYNOLDS A C, OLIVER D S .An initial guess for the Levenberg-Marquardt algorithm for conditioning a stochastic channel to pressure data[J].Mathematical Geology,2003,35(1):67-88.
|
14 |
ZHU J, JIANG Q, SHEN Y,et al .Application of recurrent neural network to mechanical fault diagnosis:a review[J].Journal of Mechanical Science and Technology,2022,36:527-542.
|
15 |
WELCH G, BISHOP G .An introduction to the kalman filter[R].Raleigh:University of North Carolina,2006.
|
16 |
NOVI T, CAPITANI R, ANNICCHIARICO C .An integrated artificial neural network-unscented Kalman filter vehicle sideslip angle estimation based on inertial measurement unit measurements[J].Proceedings of the Institution of Mechanical Engineers,Part D:Journal of Automobile Engineering,2019,233(7):1864-1878.
|
17 |
HAO Y, QIU X .Performance analysis of wireless location and velocity tracking of digital broadcast signals based on extended Kalman filter algorithm[J].Complexity,2021(2021):1-10.
|
18 |
李小兵,田玉松,邱天爽 .基于Kalman滤波的基本Elman网络训练新算法[J].大连理工大学学报,2009,49(2):276-281.
|
|
LI Xiao-bing, TIAN Yu-song, QIU Tian-shuang .A new training algorithm based on Kalman filter of essential Elman network[J].Journal of Dalian University of Technology,2009,49(2):276-281.
|
19 |
WANG J, ZHANG J, WANG Y,et al .Nonlinear identification of one-stage spur gearbox based on pseudo-linear neural network[J].Neurocomputing,2018,308:75-86.
|
20 |
CHEN C, DOU Y, CHEN J,et al .A novel neural network training framework with data assimilation[J].Journal of Supercomputing,2022,78(17):19020-19045.
|
21 |
ROTH M, HENDEBY G, FRITSCHE C,et al .The ensemble Kalman filter:a signal processing perspective[J].EURASIP Journal on Advances in Signal Proce-ssing,2017,2017(1):1-16.
|
22 |
EVENSEN G .Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics[J].Journal of Geophysical Research,1994,99:10143-10162.
|
23 |
LEGLER S, JANJIĆ T .Combining data assimilation and machine learning to estimate parameters of a convective-scale model[J].Quarterly Journal of the Royal Meteorological Society,2022,148(743):860-874.
|
24 |
MIRIKITANI D T, NIKOLAEV N .Dynamic modeling with ensemble Kalman filter trained recurrent neural networks[C]∥Proceedings of 2008 Seventh International Conference on Machine Learning and Applications.San Diego:IEEE,2008:843-848.
|
25 |
CHEN C, LIN X, HUANG Y,et al .Approximate bayesian neural network trained with ensemble Kalman filter[C]∥Proceedings of 2019 International Joint Conference on Neural Networks (IJCNN).Budapest:IEEE,2019:1-8.
|
26 |
ELMAN J L .Finding structure in time[J].Cognitive Science,1990,14(2):179-211.
|
27 |
EVENSEN G .The ensemble Kalman filter:theoretical formulation and practical implementation[J].Ocean Dynamics,2003,53(4):343-367.
|
28 |
MANDEL J .Efficient implementation of the ensemble Kalman filter[R].Denver:University of Colorado at Denver,2006.
|
29 |
ZUPANSKI M .Maximum likelihood ensemble filter:theoretical aspects[J].Monthly Weather Review,2005,133(6):1710-1726.
|
30 |
BOCQUET M .Ensemble Kalman filtering without the intrinsic need for inflation[J].Nonlinear Processes in Geophysics,2011,18(5):735-750.
|
31 |
BOCQUET M, SAKOV P .Combining inflation-free and iterative ensemble Kalman filters for strongly nonlinear systems[J].Nonlinear Processes in Geophysics,2012,19(3):383-399.
|
32 |
BOCQUET M, RAANES P N, HANNART A .Expanding the validity of the ensemble Kalman filter without the intrinsic need for inflation[J].Nonlinear Processes in Geophysics,2015,22(6):645-662.
|
33 |
LIU Y, HUANG D, LI Y .Development of interval soft sensors using enhanced just-in-time learning and inductive confidence predictor[J].Industrial & Engineering Chemistry Research,2012,51(8):3356-3367.
|
34 |
LIU Y, CHEN J, SUN Z,et al .A probabilistic self-validating soft-sensor with application to wastewater treatment[J].Computers & Chemical Engineering,2014,71:263-280.
|
35 |
LIU Y, YUAN L, LI D,et al .Process monitoring of quality-related variables in wastewater treatment using Kalman-Elman neural network-based soft-sensor modeling[J].Water,2021,13(24):1-21.
|