Journal of South China University of Technology(Natural Science Edition) ›› 2022, Vol. 50 ›› Issue (11): 115-124.doi: 10.12141/j.issn.1000-565X.210217
Special Issue: 2022年土木建筑工程
• Architecture & Civil Engineering • Previous Articles Next Articles
XIONG Ergang1 ZU Kun1,2 HU Qinbin1 ZHANG Qian3 LIANG Xingwen4
Received:
2021-04-14
Online:
2022-11-25
Published:
2021-10-29
Contact:
祖坤(1998-),男,博士生,主要从事混凝土结构基本理论及纤维增强复合材料组合结构研究。
E-mail:zuk1125@163.com
About author:
熊二刚(1980-),男,博士,教授,主要从事混凝土结构基本理论及工程结构抗震研究.E-mail:xerg@chd.edu.cn.
Supported by:
CLC Number:
XIONG Ergang, ZU Kun, HU Qinbin, et al. Shear Capacity Prediction for RC Beams Without Stirrups Based on Mechanical Research[J]. Journal of South China University of Technology(Natural Science Edition), 2022, 50(11): 115-124.
Table 1
Parameters of test specimens"
试件编号 | λ | a /mm | d /mm | As /mm2 | ρ /% |
---|---|---|---|---|---|
R1-1.13-700 | 3.21 | 700 | 218 | 307.88 | 1.13 |
R2-1.42-700 | 3.21 | 700 | 218 | 386.42 | 1.42 |
R3-1.85-700 | 3.48 | 700 | 201 | 464.96 | 1.85 |
R4-1.13-575 | 2.64 | 575 | 218 | 307.88 | 1.13 |
R5-1.42-575 | 2.64 | 575 | 218 | 386.42 | 1.42 |
R6-1.85-575 | 2.86 | 575 | 201 | 464.96 | 1.85 |
R7-1.13-400 | 1.83 | 400 | 218 | 307.88 | 1.13 |
R8-1.42-400 | 1.83 | 400 | 218 | 386.42 | 1.42 |
R9-1.85-400 | 1.99 | 400 | 201 | 464.96 | 1.85 |
Table 5
Calculation models for the shear capacity of RC beams without stirrups"
计算模型 | 计算公式 | 参数备注 |
---|---|---|
中国规范 GB 50010—2010[ | αcv为构件斜截面受剪承载力系数;βh为截面高度影响系数;ft为混凝土轴心抗拉强度设计值;b为矩形截面的宽度或T形、I形截面腹板的宽度;h0为截面有效高度 | |
美国规范 ACI 318-14[ | 简化式 | fc'为混凝土圆柱体抗压强度值;ρw为纵筋配筋率;Vu、Mu分别为计算截面的剪力和弯矩值;bw为截面腹板宽度;d为截面有效高度 |
欧洲规范 EC 2[ | CRd,c为材料修正系数,其中γc为混凝土材料分项系数,持久设计状态下取1.5,偶然设计情况时取1.2;k为尺寸效应影响系数,fck为混凝土圆柱体抗压强度特征值;ρ1为纵向受拉钢筋配筋率,ρ1≤2.0%;当剪跨长度为0.5d≤a<2d时,将结果除以系数β=a/2d;当a<0.5d时,取a=0.5d;其他参数同美国ACI 318-14规范 | |
日本规范 JSCE 2007[ | βd为尺寸效应计算系数;ρv为纵筋配筋率;βn为考虑弯曲应力和轴力作用系数;Nd'为轴向压力设计值;M0为设计弯矩值;Md为轴向力引起的弯矩;γb为承载力分项系数,取1.3 | |
Zsutty公式[ | 参数同美国ACI 318-14规范 | |
中国规范 GB 50608—2010[ | c为截面中和轴到受压区边缘的距离;Af 为纵向受拉FRP筋截面面积;ρf 为纵向受拉FRP筋配筋率;αf 为FRP筋与混凝土弹性模量之比;h0f 为纵向受拉FRP筋合力点至截面受压区边缘的距离 | |
美国规范 ACI 440.1R-15[ | 参数同我国GB 50608—2010规范 | |
加拿大规范 CSA S806-12[ | λ为混凝土密度折减系数,对普通混凝土取1;?c为混凝土抗力系数,取值为0.65;EF为FRP筋的弹性模量;ρFW为FRP纵筋的配筋率;当d≥300 mm时,在计算中引入尺寸效应因子ks来考虑尺寸效应的影响,其中ks=750/(450+d)≤1.0 |
Table 6
Comparisons between experiment results and calculated values"
试件编号 | Vtest/kN | VMEC/kN | VGB/kN | VACI/kN | VEC 2/kN | VJSCE/kN | VZsutty /kN | Vpre/Vtest | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MEC | GB | ACI | EC 2 | JSCE | Zsutty | ||||||||
R1-1.13-700 | 31.27 | 27.28 | 24.37 | 22.51 | 19.36 | 18.55 | 26.47 | 0.87 | 0.78 | 0.72 | 0.62 | 0.59 | 0.85 |
R2-1.42-700 | 41.01 | 36.85 | 24.37 | 22.51 | 20.89 | 20.02 | 28.57 | 0.90 | 0.59 | 0.55 | 0.51 | 0.49 | 0.70 |
R3-1.85-700 | 40.22 | 38.59 | 22.47 | 20.76 | 21.46 | 20.57 | 28.00 | 0.96 | 0.56 | 0.52 | 0.53 | 0.51 | 0.70 |
R4-1.13-575 | 42.27 | 38.91 | 26.78 | 22.51 | 19.36 | 18.55 | 28.27 | 0.92 | 0.63 | 0.53 | 0.46 | 0.44 | 0.67 |
R5-1.42-575 | 42.91 | 42.85 | 26.78 | 22.51 | 20.89 | 20.02 | 30.50 | 1.00 | 0.62 | 0.52 | 0.49 | 0.47 | 0.71 |
R6-1.85-575 | 45.01 | 39.94 | 23.29 | 20.76 | 21.46 | 20.57 | 29.90 | 0.89 | 0.52 | 0.46 | 0.48 | 0.46 | 0.66 |
R7-1.13-400 | 54.13 | 58.94 | 34.45 | 22.51 | 19.36 | 18.55 | 43.47 | 1.09 | 0.64 | 0.42 | 0.36 | 0.34 | 0.80 |
R8-1.42-400 | 82.22 | 82.09 | 34.45 | 22.51 | 20.89 | 20.02 | 46.91 | 1.00 | 0.42 | 0.27 | 0.25 | 0.24 | 0.57 |
R9-1.85-400 | 68.40 | 77.31 | 30.06 | 20.76 | 21.46 | 20.57 | 42.39 | 1.13 | 0.44 | 0.30 | 0.31 | 0.30 | 0.62 |
平均值 | 0.97 | 0.58 | 0.48 | 0.45 | 0.43 | 0.70 | |||||||
变异系数 | 0.09 | 0.18 | 0.27 | 0.24 | 0.24 | 0.11 |
1 | 戚家南,王景全,周凯,等 .UHPC梁受剪性能试验与抗剪承载力计算方法[J].中国公路学报,2020,33(7):95-103. |
QI Jia-nan, WANG Jing-quan, ZHOU Kai,et al .Experimental and theoretical investigations on shear strength of UHPC beams[J].China Journal of Highway and Transport,2020,33(7):95-103. | |
2 | 袁健,易伟建 .钢筋混凝土无腹筋梁受剪承载力计算模型误差分析[J].建筑结构学报,2014,35(9):72-81. |
YUAN Jian, YI Wei-jian .Error analysis of shear capaci-ty calculation models for reinforced concrete beams without web reinforcement[J].Journal of Building Structures,2014,35(9):72-81. | |
3 | 杜修力,金浏,李冬 .混凝土与混凝土结构尺寸效应述评(II):构件层次[J].土木工程学报,2017,50(11):24-44. |
DU Xiu-li, JIN Liu, LI Dong .A state-of-the-art review on the size effect of concretes and concrete structures (II):RC members[J].China Civil Engineering Journal,2017,50(11):24-44. | |
4 | 魏巍巍,贡金鑫,车轶 .无腹筋钢筋混凝土受弯构件基于修正压力场理论的受剪计算[J].建筑结构学报,2010,31(8):79-85. |
WEI Wei-wei, GONG Jin-xin, CHE Yi .Shear strength of reinforced concrete m embers without stirrups based on modified compression field theory[J].Journal of Building Structures,2010,31(8):79-85. | |
5 | 熊二刚,祖坤,张倩,等 .基于压力路径法的RC梁受力性能试验研究[J].华南理工大学学报(自然科学版),2020,48(10):56-66,87. |
XIONG Ergang, ZU Kun, ZHANG Qian,et al .Experimental study on mechanical behavior of RC beams based on compressive force path method[J].Journal of South China University of Technology (Natural Science Edition),2020,48(10):56-66,87. | |
6 | LUCAS W, OEHLERS D J,ALI M .Formulation of a shear resistance mechanism for inclined cracks in RC beams[J].Journal of Structural Engineering,2011,137(12):1480-1488. |
7 | 祖坤,熊二刚,宋良英,等 .高强混凝土构件力学性能研究综述[J].硅酸盐通报,2019,38(10):3178-3192. |
ZU Kun, XIONG Er-gang, SONG Liang-ying,et al .Review on mechanical properties of high-strength concrete members[J].Bulletin of the Chinese Ceramic Society,2019,38(10):3178-3192. | |
8 | 祖坤 .基于力学分析的无腹筋RC梁受剪承载力研究[D].西安:长安大学,2020. |
9 | VISINTIN P, OEHLERS D J, WU C,et al .A mechanics solution for hinges in RC beams with multiple cracks[J].Engineering Structures,2012,36(3):61-69. |
10 | ZHANG J P .Diagonal cracking and shear strength of reinforced concrete beams[J].Magazine of Concrete Research,1997,49(178):55-65. |
11 | GALE L, IBELL T J .Effects of compression reinforcement on the shear strength of reinforced concrete bridge beams[J].Magazine of Concrete Research,2000,52(4):275-285. |
12 | PARK H G, CHOI K K, WIGHT J K .Strain-based shear strength model for slender beams without web reinforcement[J].ACI Structural Journal,2006,103(6):783-793. |
13 | REGAN P E, YU C W .Limit state design of structural concrete[M].London:Chatto and Windus,1973. |
14 | REINECK K H, BENTZ E C, FITIK B,et al .ACI-DAfStb database of shear tests on slender reinforced concrete beams without stirrups[J].ACI Structural Journal,2013,110(5):867-875. |
15 | 祖坤,熊二刚,罗斌,等 .基于梁-拱复合受力机制的高强混凝土梁受剪分析模型[J].哈尔滨工业大学学报,2022,54(11):78-87. |
ZU Kun, XIONG Er-gang, LUO Bin,et al .Shear analysis model of high-strength concrete beams based on beam-arch action mechanism[J].Journal of Harbin Institute of Technology,2022,54(11):78-87. | |
16 | ACI 318-14.Building code requirements for structural concrete and commentary [S].Farmington Hills:American Concrete Institute,2014. |
17 | ZHANG T, OEHLERS D J, VISINTIN P .Shear strength of FRP RC beams and one-way slabs without stirrups[J].Journal of Composites for Construction,2014,18(5):04014007. |
18 | 混凝土结构设计规范: [S]. |
19 | EN 1992-1-1 :2004.Design of concrete structures:Part 1-1:General rules and rules for buildings [S]. |
20 | J .Standard specifications for concrete structures-2007:design [S]. |
21 | ZSUTTY T C .Beam shear strength prediction by analysis of existing data[J].ACI Journal Proceedings,1968,65(11):943-951. |
22 | 纤维增强复合材料建设工程应用技术规范: [S]. |
23 | ACI 440.1R-15.Guide for design and construction of concrete reinforced with FRP bars [S]. |
24 | CSA S806-12.Design and construction of building structures with fiber-reinforced polymers [S]. |
25 | ALI A H, MOHAMED H M, CHALIORIS C E,et al .Evaluating the shear design equations of FRP-reinforced concrete beams without shear reinforcement[J].Engineering Structures,2021,235:112017. |
26 | MARI A, CLADERA A, OLLER E,et al .Shear design of FRP reinforced concrete beams without transverse reinforcement[J].Composites Part B:Engineering,2014,57:228-241. |
27 | FARGHALY A, BENMOKRANE B .Shear behavior of FRP reinforced concrete deep beams without web reinforcement[J].Journal of Composites for Construction,2013,17(6):04013015. |
28 | PENG F, XUE W, XUE W .Database evaluation of shear strength of slender fiber-reinforced polymer-reinforced concrete members[J].ACI Structural Journal,2020,117(3):273-281. |
[1] | ZHAO Jiandong, ZHU Dan, LIU Jiaxin. Metro Transfer Passenger Flow Prediction Based on STL-GRU [J]. Journal of South China University of Technology(Natural Science Edition), 2022, 50(5): 22-31. |
[2] | YOU Dongdong LI Jialiang LIU Gaojun YANG Shan. Fault Early Warning Method Of Nuclear Valve Position Sensor Based On Bayesian LSTM Model [J]. Journal of South China University of Technology(Natural Science Edition), 2021, 49(12): 43-52. |
[3] | WANG Shiyuan WANG Wenyue QIAN Guobing. Prediction of Chaotic Sequence with the Adaptive Moment Estimation Algorithm Based on Maximum Correntropy Criterion [J]. Journal of South China University of Technology (Natural Science Edition), 2019, 47(4): 20-26,34. |
[4] | YANG Chun-ling XIONG Guang-yin DAI Chao. Fast Searching-Based Iterative Multi-Hypothesis Algorithm Applied to Compressed Video Sensing [J]. Journal of South China University of Technology (Natural Science Edition), 2017, 45(7): 107-112,125. |
[5] | HONG Lei DUO Run-min WANG Su-yan. Influence of Bond Length on Bonded Interface Performance of CFRP-C60 Concrete [J]. Journal of South China University of Technology (Natural Science Edition), 2016, 44(2): 14-19. |
[6] | LONG Yao ZHANG Jia-sheng CHEN Jun-hua. Shear Characteristics of Structure Interface and Its Strain-Softening and Hardening Damage Model [J]. Journal of South China University of Technology (Natural Science Edition), 2016, 44(12): 128-134. |
[7] | Wu Li-li Liu Yan Jiang Yu-peng Zhang Dong-dong. Failure Modes Analysis of Steel Plate-Concrete Composite Slabs Under Transverse Concentrated Load [J]. Journal of South China University of Technology (Natural Science Edition), 2015, 43(7): 68-74,99. |
[8] | Liu Dong Chen Xiao- ping. Laboratory Test and Parameter Back Analysis of Residual Strength of Slip Zone Soils [J]. Journal of South China University of Technology (Natural Science Edition), 2014, 42(2): 81-87. |
[9] | Zhan Xiao-li Wang Duan-yi . Analysis of Viscoelastic Properties of Modified Asphalt via Dynamic Mechanical Method [J]. Journal of South China University of Technology (Natural Science Edition), 2010, 38(3): 37-40,52. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||