Journal of South China University of Technology(Natural Science Edition) ›› 2012, Vol. 40 ›› Issue (4): 8-15.

• Computer Science & Technology • Previous Articles     Next Articles

Super-Resolution Image Reconstruction Based on Manifold Learning and Gradient Constraint

Liao Xiu-xiu1  Han Guo-qiang1  Wo Yan1  Huang Han-quan1  Li Zhan2   

  1. 1.School of Computer Science and Engineering,South China University of Technology,Guangzhou 510006,Guangdong,China; 2.Department of Computer Science,Jinan University,Guangzhou 510632,Guangdong,China
  • Received:2011-07-09 Revised:2011-12-26 Online:2012-04-25 Published:2012-03-01
  • Contact: 廖秀秀(1983-) ,女,博士生,主要从事图像恢复与超分辨率重建、图像配准研究. E-mail:lxx0221@yahoo.com.cn
  • About author:廖秀秀(1983-) ,女,博士生,主要从事图像恢复与超分辨率重建、图像配准研究.
  • Supported by:

    NSFC - 广东省联合基金资助项目( U1035004) ; 国家自然科学基金青年科学基金资助项目( 61003270) ; 国家自然科学基金面上项目( 61070090) ; 广东省工业攻关科技计划项目( 2009B030803004) ; 华南理工大学中央高校基本科研业务费专项资金重点资助项目( 2012ZZ0066) ; 广东省重大科技专项项目( 2010A080402005) ; 广东省自然科学基金博士启动项目( 10452840301004638)

Abstract:

Proposed in this paper is a novel super-resolution reconstruction algorithm of single-frame images,which integrates the improved super-resolution reconstruction based on manifold learning with the regularized reconstruction based on gradient constraint. In this algorithm,a new feature extraction method,which combines the two feature vectors of the normalized luminance and the detail sub-band coefficient of stationary wavelet transform,is put forward for the super-resolution reconstruction based on manifold learning,and is used to improve the reconstruction performance. Then,a regularized reconstruction based on gradient constraint is implemented to obtain the final high-resolution image,with the learned high-resolution image and its gradient respectively as the initial estimate and the target gradient field. As compared with some existing algorithms,the proposed algorithm is of better reconstruction performance in terms of both visual effect and objective evaluation.

Key words: image processing, super-resolution reconstruction, manifold learning, gradient constraint, regularized reconstruction

CLC Number: