Journal of South China University of Technology(Natural Science Edition) ›› 2011, Vol. 39 ›› Issue (12): 13-19.

• Electronics, Communication & Automation Technology • Previous Articles     Next Articles

Medical Image Fusion Based on Shift-Invariant Shearlet Transformation

Wang Lei  Li Bin  Tian Lian-fang   

  1. School of Automation Science and Engineering,South China University of Technology,Guangzhou 510640,Guangdong,China
  • Received:2011-05-16 Revised:2011-08-04 Online:2011-12-25 Published:2011-11-04
  • Contact: 李彬(1979-),男,博士,讲师,主要从事计算可视化、医学图像处理与模式识别研究. E-mail: binlee@scut.edu.cn E-mail:wanglei051108@163.com
  • About author:王雷(1984-) ,男,博士生,主要从事医学图像处理与模式识别研究.
  • Supported by:

    教育部高等学校博士学科点专项科研基金资助项目( 200805610018) ; 粤港关键领域重点突破项目( 佛山2010Z11) ; 国家质检总局科技计划项目( 2011IK078) ; 广东省教育部产学研结合项目( 2009B090300057) ; 广东省自然科学基金资助项目( S2011010005811) ; 华南理工大学国家人体组织功能重建工程技术研究中心以及广东省生物医学工程重点实验室资助课题; 华南理工大学中央高校基本科研业务费专项资金重点资助项目( 2011ZZ0021)

Abstract:

In the conventional shearlet transformation-based image fusion methods,there commonly exists a pseudo-Gibbs phenomenon at the singularities of the fused image. In order to solve this problem,a new fusion method of medical images is proposed based on the shift-invariant shearlet transformation. In this method,source images are decomposed into lowpass and highpass sub-bands via the shift-invariant shearlet transformation. Then,the lowpass coefficients are combined by employing the scheme based on the region coefficients’absolute values and weights,and the highpass sub-bands are merged by adopting a fusion scheme based on the support vector value-motivated self-generating neural network ( SGNN). Finally,the fused image is obtained via the inverse shift-invariant shearlet transformation. Both the visual comparison and the quantitative analysis show that the proposed method effectively avoids the pseudo-Gibbs phenomenon and outperforms the conventional wavelet-based,contourlet-based and nonsubsampled contourlet-based methods in terms of entropy,mutual information,average gradient and QAB/F.

Key words: medical image, image fusion, shift invariance, shearlet, discrete shearlet transformation

CLC Number: