Journal of South China University of Technology(Natural Science Edition) ›› 2024, Vol. 52 ›› Issue (10): 51-63.doi: 10.12141/j.issn.1000-565X.230722
• Computer Science & Technology • Previous Articles Next Articles
LIU Ning1,2(), HUA Tianbiao1, WANG Gao1, CHEN Faming1(
)
Received:
2023-11-22
Online:
2024-10-25
Published:
2024-02-09
Contact:
陈法明(1986—),男,实验师,主要从事嵌入式智能控制、车间建模与可视化研究。
E-mail:fmchen@jnu.edu.cn
About author:
柳宁(1963—),男,博士,教授,主要从事智能制造、车间建模与调度、机器人研究。E-mail:tliuning@jnu.edu.cn
Supported by:
CLC Number:
LIU Ning, HUA Tianbiao, WANG Gao, et al. A Batch Scheduling Method of Flexible Job-Shop with Partially Out-of-Ordered Execute Operation[J]. Journal of South China University of Technology(Natural Science Edition), 2024, 52(10): 51-63.
Table 3
Experimental data of instance 2"
序号 | 作业批量/件 | 初始工序流程 | 无序工序 | 工序时产/(件·h-1) | 子批次最小批量/件 |
---|---|---|---|---|---|
1 | 800 | 切割-雕刻-丝印、烫金-包装 | 雕刻、丝印、烫金 | 30,50,250,500,600 | 50 |
2 | 700 | 切割-色彩、烫金-包装 | 色彩、烫金 | 33,250,300,530 | 60 |
3 | 600 | 切割-雕刻-色彩、烫金-包装 | 色彩、烫金 | 35,60,210,570,500 | 50 |
4 | 900 | 切割-雕刻-色彩、丝印-包装 | 色彩、丝印 | 40,55,230,320,500 | 40 |
5 | 1 200 | 切割-雕刻、丝印、烫金-包装 | 雕刻、丝印、烫金 | 32,70,200,580,500 | 60 |
6 | 1 500 | 切割-色彩、烫金-包装 | 色彩、烫金 | 35,240,450,600,560 | 50 |
7 | 1 250 | 切割-色彩、烫金-包装 | 色彩、烫金 | 36,250,620,500 | 50 |
Table 4
Statistical data of MNSGA-Ⅱ algorithm running 10 times for instance 1"
运行 次数 | 完工时间/min | 机器负载均衡方差 | 机器总负荷/min | 作业分批数 | 总批次 |
---|---|---|---|---|---|
平均值 | 879 | 7 115 | 13 460 | 6,8,9,11 | 25 |
1 | 876 | 8 732 | 13 460 | 6,8,10,11 | 25 |
2 | 893 | 8 625 | 13 483 | 6,8,9,11 | 24 |
3 | 893 | 5 998 | 13 380 | 6,8,10,12 | 26 |
4 | 867 | 8 153 | 13 350 | 6,8,9,11 | 24 |
5 | 889 | 6 723 | 13 681 | 6,7,10,12 | 25 |
6 | 859 | 8 716 | 13 306 | 6,7,10,12 | 25 |
7 | 865 | 5 595 | 13 441 | 5,8,10,12 | 25 |
8 | 882 | 5 996 | 13 653 | 6,8,9,11 | 24 |
9 | 893 | 5 981 | 13 505 | 6,8,9,11 | 24 |
10 | 878 | 6 635 | 13 341 | 6,8,10,12 | 26 |
Table 5
Comparison of statistical data of scheduling results among six algorithms for instance 1"
算法 | 完工时间/min | 机器负载均衡方差 | 机器总 负荷/min | 作业 分批数 | 总批次 |
---|---|---|---|---|---|
FCFS | 890 | 8 916 | 13 160 | 6,8,10,12 | 26 |
SPT | 904 | 9 115 | 13 076 | 6,8,10,12 | 26 |
EDD | 915 | 6 782 | 13 059 | 6,8,10,12 | 26 |
STR | 989 | 9 729 | 12 912 | 6,8,10,12 | 26 |
GA | 840 | 10 393 | 13 552 | 6,8,10,12 | 26 |
MNSGA-Ⅱ | 879 | 7 115 | 13 460 | 6,8,9,11 | 25 |
Table 6
Statistical data of MNSGA-Ⅱ algorithm running 10 times for Instance 2"
MNSGA-Ⅱ | 完工时间/min | 机器负载均衡方差 | 机器总负载/min | 作业分批数 | 总批次 |
---|---|---|---|---|---|
平均值 | 1 366 | 2 368 | 25 122 | 15,9,10,19,19,27,18 | 116 |
1 | 1 346 | 3 216 | 25 023 | 16,12,6,18,19,28,11 | 110 |
2 | 1 362 | 1 017 | 25 502 | 16,10,12,21,14,29,25 | 127 |
3 | 1 379 | 2 441 | 25 440 | 16,10,12,14,14,29,25 | 120 |
4 | 1 397 | 1 760 | 25 183 | 16,9,12,20,30,25,18 | 114 |
5 | 1 393 | 2 543 | 25 380 | 15,11,8,20,19,19,19 | 111 |
6 | 1 372 | 3 742 | 24 619 | 16,8,8,19,18,28,11 | 108 |
7 | 1 348 | 2 869 | 24 863 | 15,10,12,13,20,29,15 | 114 |
8 | 1 330 | 2 061 | 25 080 | 15,8,10,21,19,29,25 | 127 |
9 | 1 363 | 3 258 | 25 134 | 7,11,10,22,20,27,14 | 111 |
10 | 1 365 | 777 | 24 995 | 13,10,5,20,19,30,22 | 119 |
Table 7
Comparison of statistical data of scheduling results among six algorithms for Instance 2"
算法 | 完工时间/min | 机器负载均衡方差 | 机器总负荷/min | 作业分批数 | 总批次 |
---|---|---|---|---|---|
FCFS | 1 420 | 1 832 | 23 840 | 16,12,12,23,20,30,25 | 138 |
SPT | 1 515 | 4 697 | 23 838 | 16,12,12,23,20,30,25 | 138 |
EDD | 1 441 | 2 006 | 24 284 | 16,12,12,23,20,30,25 | 138 |
STR | 1 476 | 2 067 | 23 841 | 16,12,12,23,20,30,25 | 138 |
GA | 1 347 | 5 096 | 24 608 | 16,12,4,10,21,31,12 | 106 |
MNSGA-Ⅱ | 1 366 | 2 368 | 25 122 | 15,9,10,19,19,27,18 | 116 |
1 | YI H, QU T, ZHANG K,et al .Production logistics in industry 3.x:bibliometric analysis,frontier case study,and future directions[J].Systems,2023,11(7):371/1-30. |
2 | LI M, LI M, GUO D,et al .Real-time data-driven out-of-order synchronization for production and intralogistics in multiresource-constrained assembly systems[J].IEEE Transactions on Systems,Man,and Cybernetics:Systems,2023,53(12):7513-7525. |
3 | BRUCKER P, SCHLIE R .Job-shop scheduling with multi-purpose machines[J].Computing,1990,45:369-375. |
4 | 徐本柱,费晓璐,章兴玲 .柔性作业车间批量划分与并行调度优化[J].计算机集成制造系统,2016,22(8):1953-1964. |
XU Benzhu, FEI Xiaolu, ZHANG Xingling .Batch division and parallel scheduling optimization of flexible job shop[J].Computer Integrated Manufacturing System,2016,22(8):1953-1964. | |
5 | ZHAO B, GAO J, CHEN K,et al .Two-generation Pareto ant colony algorithm for multi-objective job shop scheduling problem with alternative process plans and unrelated parallel machines[J].Journal of Intelligent Manufacturing,2018,29(1):93-108. |
6 | JAMRUS T, CHIEN C F,GEN M,et al .Hybrid particle swarm optimization combined with genetic operators for flexible job-shop scheduling under uncertain processing time for semiconductor manufacturing[J].IEEE Transactions on Semiconductor Manufacturing,2017,31(1):32-41. |
7 | SUN K, ZHENG D, SONG H,et al .Hybrid genetic algorithm with variable neighborhood search for flexible job shop scheduling problem in a machining system[J].Expert Systems with Applications,2023,215:119359/1-18. |
8 | LI Y, CHEN X, AN Y,et al .Integrating machine layout,transporter allocation and worker assignment into job-shop scheduling solved by an improved non-dominated sorting genetic algorithm[J].Computers & Industrial Engineering,2023,179:109169/1-19. |
9 | ZHANG F, MEI Y, NGUYEN S,et al .Multitask multiobjective genetic programming for automated scheduling heuristic learning in dynamic flexible job-shop scheduling[J].IEEE Transactions on Cybernetics,2023,53(7):4473-4486. |
10 | BRAUNE R, BENDA F, DOERNER K F,et al .A genetic programming learning approach to generate dispatching rules for flexible shop scheduling problems[J].International Journal of Production Economics,2022,243:108342/1-13. |
11 | SONG W, CHEN X, LI Q,et al .Flexible job-shop scheduling via graph neural network and deep reinforcement learning[J].IEEE Transactions on Industrial Informatics,2022,19(2):1600-1610. |
12 | 张凯,毕利,焦小刚 .集成强化学习算法的柔性作业车间调度问题研究[J].中国机械工程,2023,34(2):201-207. |
ZHANG Kai, BI Li, JIAO Xiaogang .Research on flexible job-shop scheduling problems with integrated reinforcement learning algorithm[J].China Mechanical Engineering,2023,34(2):201-207. | |
13 | LI Y, WANG A, ZHANG S .A batch scheduling technique of flexible job-shop based on improved genetic algorithm[C]∥ Proceedings of 2022 IEEE International Conference on Mechatronics and Automation.Guilin:IEEE,2022:1463-1467. |
14 | 刘雪红,段程,王磊 .基于改进候鸟算法的柔性作业车间分批调度问题[J].计算机集成制造系统,2021,27(11):3185-3195. |
LIU Xuehong, DUAN Cheng, WANG Lei .Flexible job shop scheduling with lot streaming based on improved migrating birds optimizetion algorithm[J].Computer Integrated Manufacturing System,2021,27(11):3185-3195. | |
15 | 闫富乾,陈浩杰,丁国富,等 .求解柔性分批调度问题的双层搜索框架入侵杂草算法[J].计算机集成制造系统,2023,29(2):556-567. |
YAN Fuqian, CHEN Haojie, DING Guofu,et al . Improved invasive weed algorithm based on double layer search framework for flexible batch scheduling problem[J].Computer Integrated Manufacturing System,2023,29(2):556-567. | |
16 | DEB K, PRATAP A, AGARWAL S,et al .A fast and elitist multiobjective genetic algorithm:NSGA-Ⅱ[J].IEEE Transactions on Evolutionary Computation,2002,6(2):182-197. |
17 | 李树勋,胡迎港,李成,等 .基于代理模型的轴流式调节阀阀体型线优化[J].华南理工大学学报(自然科学版),2023,51(3):41-52. |
LI Shuxun, HU Yinggang, LI Cheng,et al .Optimization of body profile line of axial flow control valve based on surrogate model[J].Journal of South China University of Technology (Natural Science Edition),2023,51(3):41-52. | |
18 | VERMA S, PANT M, SNASEL V .A comprehensive review on NSGA-Ⅱ for multi-objective combinatorial optimization problems[J].IEEE Access,2021,9:57757-57791. |
19 | 郑锦灿,邵立珍,雷雪梅 .一种基于改进NSGA-Ⅱ的多目标绿色柔性作业车间调度方法[J].制造技术与机床,2023(1):145-152. |
ZHENG Jincan, SHAO Lizhen, LEI Xuemei .A multi-objective green flexible job shop scheduling method based on improved NSGA-Ⅱ algorithm[J].Manufacturing Technology & Machine Tool,2023(1):145-152. | |
20 | 尹爱军,闫文涛,张厚望 .面向多目标柔性作业车间调度的强化学习NSGA-Ⅱ算法[J].重庆大学学报, 2022,45(10):113-123. |
YIN Aijun, YAN Wentao, ZHANG Houwang . Reinforcement learning NSGA-Ⅱ for multi-objective flexible job shop scheduling[J].Journal of Chongqing University,2022,45(10):113-123. | |
21 | 王亚昆,刘应波,吴永明,等 .改进NSGA-Ⅱ算法求解考虑运输约束的柔性作业车间节能调度问题[J].计算机集成制造系统,2023,29(9):3028-3040. |
WANG Yakun, LIU Yingbo, WU Yongming,et al .Improved NSGA-Ⅱ algorithm to solve energy-saving sche-duling problem of flexible job shop considering transpor-tation constraints[J].Computer Integrated Manufactu-ring System,2023,29(9):3028-3040. | |
22 | MA H, ZHANG Y, SUN S,et al .A comprehensive survey on NSGA-Ⅱ for multi-objective optimization and applications[J].Artificial Intelligence Review,2023,56:15217-15270. |
23 | 吴秀丽,李雨馨,匡源,等 .改进迭代贪婪算法求解可重入流水车间调度问题[J].计算机集成制造系统,2024,30(7):2364-2380. |
WU Xiuli, LI Yuxin, KUANG Yuan,et al .Improved iterative greedy algorithm for reentrant flow shop scheduling problem[J].Computer Integrated Manufacturing Systems,2024,30(7):2364-2380. |
[1] | ZHANG Yueming, LI Tianyu, JI Shuting. Influence of Cycloidal Pinwheel Reducer Parameters on Transmission Efficiency and Parameter Optimization [J]. Journal of South China University of Technology(Natural Science Edition), 2024, 52(4): 77-87. |
[2] | TANG Jinjun, REN Maoxin, LI Zhitao, et al. Optimization of Metro Feeder Bus Routes Based on Surrogate-assisted NSGA-II Algorithm [J]. Journal of South China University of Technology(Natural Science Edition), 2024, 52(11): 95-105. |
[3] | WANG Xuewu, FANG Junyu, GAO Jin, et al. Multi-Objective Optimization Based on Improved Distribution of Solutions [J]. Journal of South China University of Technology(Natural Science Edition), 2023, 51(8): 137-148. |
[4] | LI Shuxun, HU Yinggang, LI Cheng, et al. Optimization of Body Profile Line of Axial Flow Control Valve Based on Surrogate Model [J]. Journal of South China University of Technology(Natural Science Edition), 2023, 51(3): 41-52. |
[5] | LIU Guoyong, ZHANG Wenpeng, ZHANG Tongxin, et al. Structural Optimization and Flow Field Characteristics of Large Format SLM Forming Bin [J]. Journal of South China University of Technology(Natural Science Edition), 2023, 51(12): 53-63. |
[6] | ZHAO Kegang, HE Kunyang, LI Jie, et al. Multi-objective Energy Management Strategy of HEV Based on Improved Dynamic Programming Method [J]. Journal of South China University of Technology(Natural Science Edition), 2022, 50(9): 138-148. |
[7] | JIANG Tao, LU Zhou. Multi-objective Optimization of Flat Skylights in the Elevated Railway Station [J]. Journal of South China University of Technology(Natural Science Edition), 2022, 50(7): 13-24. |
[8] | WEI Runbin, JIA Shunping, TONG Ruiyong, et al. Optimization of Train Planning for General Tree-Type Line [J]. Journal of South China University of Technology(Natural Science Edition), 2022, 50(11): 44-51. |
[9] | LIU Hanwu, LEI Yulong, FU Yao, et al. Adaptive Regenerative Braking Control Strategy of Range-Extended Electric Vehicle Based on Multi-Objective Optimization [J]. Journal of South China University of Technology (Natural Science Edition), 2021, 49(7): 42-50,65. |
[10] | JIN Xia, HU Juncong, WANG Wei, et al. Adjustment Strategy for Automobile Hood Matching in Virtual Environment [J]. Journal of South China University of Technology (Natural Science Edition), 2020, 48(6): 87-96. |
[11] |
WU Di LIU Li LI Xiaojun LIU Conghong.
Research on the Technologies of Passive Low Energy Buildings on the Basis of Multi-Objective Optimization Method———by Taking Cold Zone Residential Buildings for Example
|
[12] | BAI Zhong-hao HE Cheng ZHU Feng. Analysis of Electromagnetic and Shock Wave Mitigation Capability of a Novel Sandwich Plate with Composites [J]. Journal of South China University of Technology (Natural Science Edition), 2016, 44(9): 137-143. |
[13] | ZHAI Zhen-kun LI Di. Parameter Selection of CNC Real-Time Task on the Basis of Multi-Objective Optimization [J]. Journal of South China University of Technology (Natural Science Edition), 2016, 44(3): 23-28. |
[14] | Zhou Jie Tao Ya-ping Zhang Jian-sheng Shao Chang-wei Luo Yan. Multi-Objective Optimization of Roll Forgings of Coupler Yoke Based on MBC Toolbox [J]. Journal of South China University of Technology (Natural Science Edition), 2015, 43(11): 61-66. |
[15] | Yang Zhao-sheng Qu Xin Lin Ci-yun Bing Qi-chun Gong Bo-wen. Traffic Signal Optimization Method Considering Low Emissions and Short Delay [J]. Journal of South China University of Technology (Natural Science Edition), 2015, 43(10): 29-34,41. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||