1 |
金益锋,白艳平,刘寰 .全国16个省份足迹自动识别系统应用情况分析[J].刑事技术,2017,42(6):504-507.
|
|
JIN Yifeng, BAI Yanping, LIU Huan .Application analysis on shoeprint automatic identification system from China’s 16 provinces[J].Forensic Science and Technology,2017,42(6):504-507.
|
2 |
史力民,马建平 .足迹学[M].北京:中国人民公安大学出版社,2014:1-12.
|
3 |
KANCHAN T, MENEZES R G, MOUDGIL R,et al .Stature estimation from foot dimensions[J].Forensic Science International,2008,179(2/3):241.e1-241.e5.
|
4 |
KEATSAMARN T, PINTAVIROOJ C .Footprint identification using deep learning[C]∥ Proceedings of 2018 the 11th Biomedical Engineering International Conference.Chiang Mai:IEEE,2018:1-4.
|
5 |
陈杨,曾诚,程成,等 .一种基于CNN的足迹图像检索与匹配方法[J].南京师范大学学报(工程技术版),2018,18(3):39-45.
|
|
CHEN Yang, ZENG Cheng, CHENG Cheng,et al .A CNN-based approach to footprint image retrieval and matching[J].Journal of Nanjing Normal University (Engineering and Technology Edition),2018,18(3):39-45.
|
6 |
鲍文霞,瞿金杰,王年,等 .基于空间聚合加权卷积神经网络的力触觉足迹识别[J].东南大学学报(自然科学版),2020,50(5):959-964.
|
|
BAO Wenxia, QU Jinjie, WANG Nian,et al .Force-tactile footprint recognition based on spatial aggregation weighted convolutional neural network[J].Journal of Southeast University (Natural Science Edition),2020,50(5):959-964.
|
7 |
张艳,吴洛天,王年,等 .基于多模块关系网络的2D足迹分类[J].华南理工大学学报(自然科学版),2021,49(6):66-76.
|
|
ZHANG Yan, WU Luotian, WANG Nian,et al .2D footprint classification based on multiple-module relation network[J].Journal of South China University of Technology (Natural Science Edition),2021,49(6):66-76.
|
8 |
鲍文霞,茅丽丽,王年,等 .基于注意力双分支网络的跨模态足迹检索[J].东南大学学报(自然科学版),2021,51(5):914-922.
|
|
BAO Wenxia, MAO Lili, WANG Nian,et al .Cross-modal footprint retrieval based on the two-branch CNN with attention[J].Journal of Southeast University (Natural Science Edition),2021,51(5):914-922.
|
9 |
李浩然,周小平,王佳 .跨域图像检索综述[J].计算机工程与应用,2022,58(15):18-36.
|
|
LI Haoran, ZHOU Xiaoping, WANG Jia .Review of cross-domain image retrieval[J].Computer Engineering and Applications,2022,58(15):18-36.
|
10 |
LIU F C, GAO C Q, SUN Y Q,et al .Infrared and visible cross-modal image retrieval through shared features[J].IEEE Transactions on Circuits and Systems for Video Technology,2021,31(11):4485-4496.
|
11 |
PAUL S, DUTTA T, BISWAS S .Universal cross-domain retrieval:generalizing across classes and domains[C]∥ Proceedings of 2021 IEEE/CVF International Conference on Computer Vision.Montreal:IEEE,2021:12036-12044.
|
12 |
YU Q, SONG J, SONG Y Z,et al .Fine-grained instance-level sketch-based image retrieval [J].International Journal of Computer Vision,2021,129(2):484-500.
|
13 |
CHEN Y D, ZHANG Z L, WANG Y F,et al .AE-Net:fine-grained sketch-based image retrieval via attention-enhanced network[J].Pattern Recognition,2022,122:108291/1-15.
|
14 |
LEE H Y, TSENG H Y, MAO Q,et al .DRIT++:diverse image-to-image translation via disentangled representations[J].International Journal of Computer Vision,2020,128:2402-2417.
|
15 |
WU A, HAN Y H, ZHU L,et al .Instance-invariant domain adaptive object detection via progressive disentanglement [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2022,44(8):4178-4193.
|
16 |
BENGIO Y, COURVILLE A, VINCENT P .Representation learning:a review and new perspectives[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2013,35(8):1798-1828.
|
17 |
BELGHAZI M I, BARATIN A, RAJESWAR S,et al .Mutual information neural estimation[C]∥ Proceedings of the 35th International Conference on Machine Learning.Stockholm:IMLS,2018:864-873.
|
18 |
PENG X, HUANG Z, ZHU Y,et al .Federated adversarial domain adaptation[C]∥ Proceedings of the Eighth International Conference on Learning Representations.Ethiopia:ICLR,2020:1-19.
|
19 |
HWANG H J, KIM G H, HONG S,et al .Variational interaction information maximization for cross-domain disentanglement[C]∥ Proceedings of the 34th Conference on Neural Information Processing Systems.Vancouver:NIPS Foundation,2020:1-26.
|