Journal of South China University of Technology(Natural Science Edition) ›› 2022, Vol. 50 ›› Issue (7): 144-154.doi: 10.12141/j.issn.1000-565X.210422
Special Issue: 2022年能源、动力与电气工程
ZHOU Xuan1 WANG Xinyao1 YAN Junwei1 LEI Shangpeng1 LIANG Liequan2
Received:
2021-06-25
Online:
2022-07-25
Published:
2022-02-06
Contact:
周璇(1976-),女,副研究员,主要从事节能技术、数据挖掘等研究。
E-mail:zhouxuan@scut.edu.cn
About author:
周璇(1976-),女,副研究员,主要从事节能技术、数据挖掘等研究。
Supported by:
CLC Number:
ZHOU Xuan, WANG Xinyao, YAN Junwei, et al. Anomaly Detection of Complex Building Energy Consumption System Based on Machine Learning[J]. Journal of South China University of Technology(Natural Science Edition), 2022, 50(7): 144-154.
Table 1
Literature comparison on anomaly detection of multi-variable building complex energy system"
文献 | 方法 类别 | 数据降维特征 选择方法 | 模式划分与 基准建立方法 | 异常状态 检测方法 |
---|---|---|---|---|
[ | 监督 学习 | 模糊C均值聚类 | 支持向量机 | 支持向量数据 描述(SVDD) |
[ | 深度置信网络 | 受限玻尔兹曼机 | 受限玻尔兹曼机 | |
[ | Pearson系数 | 三西格玛准则 | CatBoost | |
[ | 无监督 学习 | 主成分分析(PCA) | 能源效率指标 | 关联规则 |
[ | 滑动窗口 | 自编码器 | 集成学习 | |
[ | K-均值聚类 | 分位阈值 | 分位阈值 | |
[ | 混合监督学习 | 能耗平均值、 日峰谷差率 | DBSCAN/K-均值聚类 | 决策树算法 |
[ | 小波分析 | 组合神经网络 | 减法聚类算法 | |
[ | 互补集合经验模态分解(CEEMD) | 长短时记忆网络(LSTM) | Grubbs检验法 | |
[ | 描述性时间 序列特征 | 符号聚合近似 | 单类支持向量机 |
Table 5
Information entropy range of subsystem operation parameters under various operating conditions"
系统工况 | 单主机 | 双主机 | |||||||
---|---|---|---|---|---|---|---|---|---|
制冷主机类 | 冷冻水泵类 | 冷却水泵类 | 冷却塔类 | 制冷主机类 | 冷冻水泵类 | 冷却水泵类 | 冷却塔类 | ||
Ⅰ类 | [0.81,1.49] | [0,1.10] | [0,1.09] | [0,1.05] | [0.86,1.18] | [0.86,1.43] | [0.67,1.10] | [0.61,1.10] | [0.39,1.05] |
Ⅱ类 | [0.77,1.50] | [0,0.69] | [0,1.09] | [0,1.05] | [0.93,1.11] | [0.88,1.51] | [0.67,1.08] | [0.61,1.08] | [0.10,1.05] |
Ⅲ类 | [0.79,1.50] | [0,1.10] | [0,1.09] | [0,1.05] | [0.78,1.23] | [0.85,1.51] | [0.62,1.09] | [0.61,1.10] | [0.61,1.05] |
Ⅳ类 | [0.61,1.50] | [0,1.34] | [0,1.37] | [0,1.05] | [0.77,1.32] | [0.83,1.51] | [0.00,1.34] | [0.00,1.10] | [0.61,1.05] |
Ⅴ类 | [0.95,1.45] | [0,0.68] | [0,0.69] | [0,1.05] | [0.93,1.06] | [1.02,1.26] | [0.68,0.69] | [0.68,0.69] | [1.05,1.05] |
1 | 中国建筑节能协会 .中国建筑能耗研究报告2020[J].建筑节能(中英文),2021,49(2):1-6. |
China Building Energy Conservation Association.China building energy consumption annual report 2020[J].Journal of BEE,2021,49(2):1-6. | |
2 | XU C, CHEN H. A hybrid data mining approach for anomaly detection and evaluation in residential buildings energy data[J].Energy and Buildings,2020,215:109864/1-13. |
3 | KATIPAMULA S, BRAMBLEY M R. Review article:methods for fault detection,diagnostics,and prognostics for building systems—a review[J].HVAC&R Research,2005,11(1):3-25. |
4 | 苗露. 基于监测数据的建筑复杂用能设备运行性能预测与分析研究[D].天津:天津大学,2014. |
5 | BUTTERWORTH H .Handbook of energy efficiency in buildings[M].Amsterdam:Elsevier,2019:597-673. |
6 | 丁洪涛,刘海柱,殷帅. 我国公共建筑节能监管平台建设现状及趋势研究[J].建设科技,2017(23):10-11. |
DING Hongtao, LIU Haizhu, Yin Shuai. Research on the current situation and trend of public building energy conservation supervision platform construction in China[J].Construction Science and Technology,2017(23):10-11. | |
7 | LEE K P, WU B H, PENG S L. Deep-learning-based fault detection and diagnosis of air-handling units[J].Building and Environment,2019,157:24-33. |
8 | GUNAY B, SHEN W, YANG C. Characterization of a building’s operation using automation data:a review and case study[J].Building and Environment,2017,118:196-210. |
9 | SUN L L, WU J H, JIA H Q,et al. Research on fault detection method for heat pump air conditioning system under cold weather[J].Chinese Journal of Chemical Engineering,2017,25(12):1812-1819. |
10 | VERBERT K, BABUSKA R, de SCHUTTER B. Combining knowledge and historical data for system-level fault diagnosis of HVAC systems[J].Engineering Applications of Artificial Intelligence,2017,59:260-273. |
11 | LIANG Y X, MENG Q L, CHANG S. Fault diagnosis and energy consumption analysis for variable air volume air conditioning system: a case study[J].Procedia Engineering,2017,205:834-841. |
12 | LI Y F, O'NEIL Z. An innovative fault impact analysis framework for enhancing building operations[J].Energy and Buildings,2019,199:311-331. |
13 | LIU J H, LIU J Y, CHEN H X,et al. Abnormal energy identification of variable refrigerant flow air-conditioning systems based on data mining techniques[J].Applied Thermal Engineering,2019,150:398-411. |
14 | GUO Y B, TAN Z H, CHEN H X,et al. Deep learning-based fault diagnosis of variable refrigerant flow air-conditioning system for building energy saving[J].Applied Energy,2018,225:732-745. |
15 | PAN Y, ZHANG L M .Data-driven estimation of building energy consumption with multi-source heterogeneous data[J].Applied Energy,2020,268:114965/1-15. |
16 | PEÑA M, BISCARRI F, GUERRERO J I,et al. Rule-based system to detect energy efficiency anomalies in smart buildings,a data mining approach[J].Expert Systems with Applications,2016, 56: 242-255. |
17 | FAN C, XIAO F, ZHAO Y,et al. Analytical investigation of autoencoder-based methods for unsupervised anomaly detection in building energy data[J].Applied Energy,2018,211:1123-1135. |
18 | LUO X J, FONG K F, SUN Y J. Development of clustering-based sensor fault detection and diagnosis strategy for chilled water system[J].Energy and Buildings,2019,186: 17-36. |
19 | LIU X, DING Y, TANG H,et al. A data mining-based framework for the identification of daily electricity usage patterns and anomaly detection in building electricity consumption data[J].Energy and Buildings,2021,231:110601/1-22. |
20 | DU Z M, FAN B, JIN X Q,et al. Fault detection and diagnosis for buildings and HVAC systems using combined neural networks and subtractive clustering analysis[J].Building and Environment,2014,73: 1-11. |
21 | SHI Z X, OBRIEN W. Development and implementation of automated fault detection and diagnostics for building systems:a review[J].Automation in Construction,2019,104:215-229. |
22 | FAHIM M, FRAZ K, SILLITTI A. TSI:Time series to imaging based model for detecting anomalous energy consumption in smart buildings[J].Information Sciences,2020,523:1-13. |
23 | BARUM H, BARRETT J, CLARK L O,et al. Entropy and information causality in general probabilistic theories[J].New Journal of Physics,2010(3) 1-32. |
24 | AI Y T, GUAN J Y, FEI C W,et al. Fusion information entropy method of rolling bearing fault diagnosis based on n-dimensional characteristic parameter distance[J].Mechanical Systems and Signal Processing,2017,88:123-136. |
25 | 孙吉贵,刘杰,赵连宇. 聚类算法研究[J].软件学报,2008,19(1):48-61. |
SUN Jigui,LIU Jie,ZHAO Lianyu,Clustering algorithms research[J].Journal of Software,2008,19(1):48-61. | |
26 | 贾凡,严妍,张家琪. 基于K-means聚类特征消减的网络异常检测[J].清华大学学报(自然科学版),2018,58(2):137-142. |
JIA Fan, YAN Yan, ZHANG Jiaqi. K-means based feature reduction for network anomaly detection[J].Journal of Tsinghua University(Science and Technology),2018,58(2):137-142. | |
27 | QIN H Y, ZHOU H P, CAO J W .Imbalanced learning algorithm based intelligent abnormal electricity consumption detection[J].Neurocomputing,2020,402:112-123. |
28 | GHADIRI S M E, MAZLUMI K. Adaptive protection scheme for microgrids based on SOM clustering technique[J].Applied Soft Computing,2020,88:106062. |
29 | YAZDANI S, MONTAZERI G M. A novel gas turbine fault detection and identification strategy based on hybrid dimensionality reduction and uncertain rule-based fuzzy logic[J].Computers in Industry,2020,115:103131/1-14. |
30 | 杨占华,杨燕. SOM神经网络算法的研究与进展[J].计算机工程,2006, 32(16):201-202, 208. |
YANG Zhanhua, YANG Yan. Research and development of self-organizing maps algorithm[J].Computer Engineering,2006,32(16):201-202,208. | |
31 | 中华人民共和国住房和城乡建设部. 国家机关办公建筑和大型公共建筑能耗监测系统分项能耗数据采集技术导则[G/OL].(2008-06-24).. |
32 | 胡振中,袁爽. 建筑能耗与环境监测系统标准化数据提取技术[J].清华大学学报(自然科学版),2020,60(4):357-364. |
HU Zhenzhong, YUAN Shuang .Standardized data extraction techniques for building utility consumption and environmental monitoring systems[J].Journal of Tsinghua University (Science and Technology),2020,60(4):357-364. | |
33 | YUN G Y, CHOI J, KIM J T . Energy performance of direct expansion air handling unit in office buildings[J].Energy and Buildings,2014,77:425-431. |
[1] | CHEN Tingzhao, CHEN Yanyan, WANG Zili, et al. Methods of Determining the Range of Non-motorized Travel Influence Area Under the Concept of “Metro Transit Micro-center” [J]. Journal of South China University of Technology(Natural Science Edition), 2022, 50(7): 56-65. |
[2] | ZHANG Wendong. SHI Gang, TIAN Shengwei, et al. Social Relationship-Based Task Distribution Mechanism of Crowdsensing [J]. Journal of South China University of Technology (Natural Science Edition), 2021, 49(6): 49-55. |
[3] | LI Bo ZHANG Honggang. Pavement Anomaly Detection Algorithm Based on High-order Dynamic Bayesian Network Embedding#br# [J]. Journal of South China University of Technology (Natural Science Edition), 2020, 48(1): 51-59. |
[4] |
WU Jianbin JIA Yanke LIU Yiwen .
Coverless Information Hiding Algorithm Based on Image Coding and Stitching
|
[5] | Zhao Peng Zhu Wei- wei Wu Xian- wen Liu Hui- ting. Feature Description Method for Freehand Sketch by Combining Entropy and Potential Energy [J]. Journal of South China University of Technology (Natural Science Edition), 2014, 42(5): 122-127. |
[6] | Zhou Xiao- ming Li Zhao Liu Xiong- ying. An Automatic Image Segmentation Algorithm Based on Improved FCM [J]. Journal of South China University of Technology (Natural Science Edition), 2014, 42(3): 1-7. |
[7] | Jin Jian-xiu Zheng Yi-feng Li Xu-qiong. Evaluation of Image Scrambling Degree Based on Block Information Entropy Variance [J]. Journal of South China University of Technology (Natural Science Edition), 2013, 41(3): 8-14. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||