华南理工大学学报(自然科学版) ›› 2012, Vol. 40 ›› Issue (12): 79-85.

• 汽车工程 • 上一篇    下一篇

电动汽车锂离子电池组参数辨识与SOC 估计

罗玉涛 谢斌 何小颤   

  1. 华南理工大学 机械与汽车工程学院∥广东省汽车工程重点实验室,广东 广州 510640  
  • 收稿日期:2012-05-25 修回日期:2012-09-12 出版日期:2012-12-25 发布日期:2012-11-02
  • 通信作者: 罗玉涛(1972-) ,男,博士,教授,主要从事新能源汽车及汽车电子控制等的研究. E-mail:ctytluo@scut.edu
  • 作者简介:罗玉涛(1972-) ,男,博士,教授,主要从事新能源汽车及汽车电子控制等的研究.
  • 基金资助:

    国家"863”计划项目( 2012AA110702) ; 教育部新世纪优秀人才支持计划项目( NCET-11-0157)

Parameter Identification and SOC Estimation of Lithium-Ion Battery Pack Used in Electric Vehicles

Luo Yu-tao  Xie Bin  He Xiao-chan   

  1. School of Mechanical and Automotive Engineering∥Guangdong Provincial Key Laboratory of Automotive Engineering,Guangzhou 510640,Guangdong,China
  • Received:2012-05-25 Revised:2012-09-12 Online:2012-12-25 Published:2012-11-02
  • Contact: 罗玉涛(1972-) ,男,博士,教授,主要从事新能源汽车及汽车电子控制等的研究. E-mail:ctytluo@scut.edu
  • About author:罗玉涛(1972-) ,男,博士,教授,主要从事新能源汽车及汽车电子控制等的研究.
  • Supported by:

    国家"863”计划项目( 2012AA110702) ; 教育部新世纪优秀人才支持计划项目( NCET-11-0157)

摘要: 针对电动汽车用锂离子电池组,提出了一种能修正初始误差的荷电状态估算方法,即采用扩展卡尔曼滤波与安时积分的组合算法.在分析电池各种等效电路模型优缺点的基础上,选用具有双阻容并联网络的PNGV 改进型电池模型,并以某锂电池为实验对象,对其进行模型参数识别.然后依据电池模型建立电池的非线性状态空间方程,并对电池开路电压与SOC 的关系进行多项式拟合.恒流脉冲放电和ECE15 工况下的两种实验均表明,文中算法可有效修正SOC 的初始误差,并能保证估算精度.

关键词: 电动汽车, 锂离子电池, 荷电状态, 参数识别, 扩展卡尔曼滤波

Abstract:

Proposed in this paper is a SOC ( State of Charge) estimation method to correct the initial error of SOC of the lithium-ion battery pack used in electric vehicles. The new method employs an algorithm combining the extended Kalman filtering with the Ampere-hour integral method. In the investigation,first,the advantages and disadvantages of several equivalent battery circuit models were analyzed,and the improved PNGV model with double RC parallel networks was selected to perform the parameter identification of a lithium-ion battery. Then,a nonlinear dynamic model of the battery in the state-space form was constructed with the help of the improved PNGV model,and the relationship between the open circuit voltage and the corresponding SOC of the battery was analyzed based on the polynomial fitting. Finally,some experiments in the conditions of constant-current pulse discharge and ECE15 were carried out. The results indicate that the proposed algorithm effectively corrects the initial error of SOC and guarantees the estimation accuracy of SOC.

Key words: electric vehicle, lithium-ion battery, state of charge, parameter identification, extended Kalman filtering

中图分类号: