华南理工大学学报(自然科学版) ›› 2012, Vol. 40 ›› Issue (9): 97-103.

• 电子、通信与自动控制 • 上一篇    下一篇

用于多目标数据关联的群智能混合算法

袁德平1,2 史浩山1 郑娟毅3   

  1. 1.西北工业大学 电子信息学院,陕西 西安 710129; 2.中国电子科技集团公司 第二十研究所,陕西 西安 710068;3.西安邮电大学 通信与信息工程学院,陕西 西安 710121
  • 收稿日期:2012-03-27 修回日期:2012-06-05 出版日期:2012-09-25 发布日期:2012-08-01
  • 通信作者: 袁德平(1972-) ,男,博士生,高级工程师,主要从事数据融合、目标跟踪研究. E-mail:depingy@sina.com
  • 作者简介:袁德平(1972-) ,男,博士生,高级工程师,主要从事数据融合、目标跟踪研究.
  • 基金资助:

    教育部高等学校博士学科点专项科研基金资助项目( 20050699037) ; 陕西省自然科学基金资助项目( 2010JQ8021)

Hybrid Swarm Intelligent Algorithm for Multi-Target Data Association

Yuan De-ping1,2  Shi Hao-shan1  Zheng Juan-yi3   

  1. 1. School of Electronics and Information,Northwestern Polytechnical University,Xi'an 710129,Shaanxi,China; 2. CETC No 20 Research Institute,Xi'an 710068,Shaanxi,China; 3. School of Telecommunication and Information Engineering,Xi'an University of Posts and Telecommunications,Xi'an 710121,Shaanxi,China
  • Received:2012-03-27 Revised:2012-06-05 Online:2012-09-25 Published:2012-08-01
  • Contact: 袁德平(1972-) ,男,博士生,高级工程师,主要从事数据融合、目标跟踪研究. E-mail:depingy@sina.com
  • About author:袁德平(1972-) ,男,博士生,高级工程师,主要从事数据融合、目标跟踪研究.
  • Supported by:

    教育部高等学校博士学科点专项科研基金资助项目( 20050699037) ; 陕西省自然科学基金资助项目( 2010JQ8021)

摘要: 为快速实现多目标数据的关联,将蚁群优化( ACO) 算法和粒子群优化( PSO) 算法相结合,提出了一种群智能混合算法.以跟踪门确定目标的有效量测,以新息的似然函数描述量测与目标的关联关系,建立多目标数据关联的组合优化模型.利用交叉变异的PSO 算法求解出该优化组合模型的次优解,再将该次优解作为蚁群位置和信息素初始化的依据,利用ACO 算法对目标函数的解进行细搜索以求得更优解.仿真实验结果表明,该算法能够有效地提高关联准确性和收敛速度.

关键词: 数据关联, 多目标跟踪, 蚁群优化, 粒子群优化

Abstract:

In order to rapidly realize the association of multi-target data,a hybrid swarm intelligent algorithm is proposed by combining the ant colony optimization ( ACO) algorithm with the particle swarm optimization ( PSO) algorithm. In the algorithm,first,a combinatorial optimization model for the multi-target data association is constructed by using the tracking gate to confirm the effective measurements of targets and by using the likelihood function of the filter innovation to describe the association relation between the measurements and the targets. Then,the PSO algorithm based on the cross and mutation rules is used to obtain the suboptimal solution to the constructed model,and according to the suboptimal solution,the location and pheromone of each ant are initialized. Finally,the ACO algorithm is employed to make a fine searching in the solutions to target functions,so as to obtain a better solution. Simulated results indicate that the proposed algorithm can effectively improve the accuracy and convergence speed of the data association.

Key words: data association, multi-target tracking, ant colony optimization, particle swarm optimization

中图分类号: