华南理工大学学报(自然科学版) ›› 2012, Vol. 40 ›› Issue (1): 69-76.

• 机械工程 • 上一篇    下一篇

柔性作业车间调度的动态禁忌粒子群优化算法

贾兆红1 朱建建1 陈华平2   

  1. 1. 安徽大学 计算智能与信号处理教育部重点实验室,安徽 合肥 230039; 2. 中国科学技术大学 计算机科学与技术学院,安徽 合肥 230026
  • 收稿日期:2011-05-27 修回日期:2011-07-21 出版日期:2012-01-25 发布日期:2011-12-01
  • 通信作者: 贾兆红(1976-) ,女,博士,副教授,主要从事商务智能研究. E-mail:zhjia@mail.ustc.edu.cn
  • 作者简介:贾兆红(1976-) ,女,博士,副教授,主要从事商务智能研究.
  • 基金资助:

    国家自然科学基金资助项目( 70821001) ; 教育部高等学校博士学科点专项科研基金资助项目( 200803580024) ;安徽大学青年科学研究基金资助项目( 33050044) ; 安徽大学人才科研启动项目( 2303114)

Dynamic Tabu Particle Swarm Optimization Algorithm for Flexible Job-Shop Scheduling

Jia Zhao-hong1  Zhu Jian-jian1  Chen Hua-ping2   

  1. 1.Key Laboratory of Intelligent Computing and Signal Processing of the Ministry of Education,Anhui University,Hefei 230039,Anhui,China; 2.School of Computer Science and Technology,University of Science and Technology of China,Hefei 230026,Anhui,China
  • Received:2011-05-27 Revised:2011-07-21 Online:2012-01-25 Published:2011-12-01
  • Contact: 贾兆红(1976-) ,女,博士,副教授,主要从事商务智能研究. E-mail:zhjia@mail.ustc.edu.cn
  • About author:贾兆红(1976-) ,女,博士,副教授,主要从事商务智能研究.
  • Supported by:

    国家自然科学基金资助项目( 70821001) ; 教育部高等学校博士学科点专项科研基金资助项目( 200803580024) ;安徽大学青年科学研究基金资助项目( 33050044) ; 安徽大学人才科研启动项目( 2303114)

摘要: 针对复杂的多目标柔性作业车间调度问题( FJSP) ,提出一种基于全知型粒子群优化( FIPS) 和动态禁忌搜索( TS) 的混合Pareto 算法,它在利用FIPS 的全局搜索能力确定搜索方向后,通过TS 进行有效的局部搜索以提高算法的搜索性能. 该算法采用基于强度的适应度函数来评价粒子,以使非劣解均匀分布于Pareto 前沿; 采用基于公共关键块的多种邻域结构,既保持了种群的多样性,避免算法陷入局部最优,又有效提高了算法的收敛速度. 算法中还引入了基于变异的自适应扰动策略来进一步增加解的多样性. 对不同规模实例的比较实验表明,文中所提出的算法具有较好的搜索性能,是一种求解大、小规模多目标FJSP 的有效算法.

关键词: 柔性车间调度, 全知型粒子群优化, 禁忌搜索, 多目标优化

Abstract:

Based on the fully-informed particle swarm optimization ( FIPS) and the dynamic tabu search ( TS) ,a hybrid Pareto algorithm is proposed to solve the complex multi-objective flexible job-shop scheduling problem( FJSP) ,which takes advantage of the global search capability of FIPS to determine the search direction and then performs a local search with TS to effectively improve the search performance. In this algorithm,first,a strengthbased fitness function is adopted to evaluate the quality of particles,which makes the non-dominated solutions uniformly distribute along the Pareto front. Then,several neighbourhoods based on public key blocks are employed to keep the diversity of the swarm,which avoids the trapping in the local optimum and effectively accelerates the convergence of the algorithm. Moreover,a self-adaptive perturbation based on mutation is introduced in the algorithm to enhance the diversity of solutions. The results of comparative experiments in different scales indicate that the proposed algorithm is of good search performance and is effective in solving the multi-objective FJSPs in both large and small scales.

Key words: flexible shop scheduling, fully-informed particle swarm optimization, tabu search, multi-objective optimization

中图分类号: