华南理工大学学报(自然科学版) ›› 2008, Vol. 36 ›› Issue (9): 1-5.

• 计算机科学与技术 •    下一篇

基于认知几何的支持向量机分类

文贵华 朱劲锋 陆庭辉   

  1. 华南理工大学 计算机科学与工程学院, 广东 广州 510640
  • 收稿日期:2007-10-12 修回日期:2007-11-16 出版日期:2008-09-25 发布日期:2008-09-25
  • 通信作者: 文贵华(1968-),男,博士,副研究员,主要从事创新计算、机器认知、机器学习与数据挖掘研究. E-mail:crghwen@seut.edu.cn
  • 作者简介:文贵华(1968-),男,博士,副研究员,主要从事创新计算、机器认知、机器学习与数据挖掘研究.
  • 基金资助:

    广东省科技攻关项目(20078030803006);湖北省科技攻关项目(2005AA101C17)

Support Vector Machine for Classification Based on Cognitive Geometry

Wen Gui-hua  Zhu Jin-feng  Lu Ting-hui   

  1. School of Computer Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
  • Received:2007-10-12 Revised:2007-11-16 Online:2008-09-25 Published:2008-09-25
  • Contact: 文贵华(1968-),男,博士,副研究员,主要从事创新计算、机器认知、机器学习与数据挖掘研究. E-mail:crghwen@seut.edu.cn
  • About author:文贵华(1968-),男,博士,副研究员,主要从事创新计算、机器认知、机器学习与数据挖掘研究.
  • Supported by:

    广东省科技攻关项目(20078030803006);湖北省科技攻关项目(2005AA101C17)

摘要: 支持向量机(SVM)较好地解决了小样本分类问题,但仍然受稀疏数据和噪音的影响.鉴于人类具有很好的处理稀疏数据和噪音问题的能力,文中提出了模型化这些认知能力的几何化方法,特别是采用相对变换方法建立了认知相对性规律的几何化模型,并用之改进了SVM.仿真实验结果表明,改进的SVM明显提高了抵抗稀疏数据和噪音的能力.

关键词: 支持向量机, 认知规律, 相对变换, 认知几何

Abstract:

School of Computer Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, ChinaAbstract:Although a support vector machine (SVM) has excellent classification ability for small data sets, it is still inefficient for noisy or sparse data sets. As humans can effectively deal with noisy and sparse data, a geometric approach of modeling human's cognitive abilities is proposed in this paper. Moreover, a geometric model of the relative cognitive law is established via relative transformation and is then used to improve SVM. It is indicated from the simulation that the classification capability of the improved SVM for noisy and sparse data sets significantly increases.

Key words: support vector machine, cognitive law, relative transformation, cognitive geometry