华南理工大学学报(自然科学版) ›› 2025, Vol. 53 ›› Issue (6): 56-65.doi: 10.12141/j.issn.1000-565X.240396

• 车辆工程 • 上一篇    下一篇

考虑空调系统的燃料电池汽车能量管理策略

赵又群1  徐周1  虞志浩1  林棻1  何鲲鹏1,2  尤庆伸2   

  1. 1.南京航空航天大学 能源与动力学院,江苏 南京 210016;

    2.奇瑞新能源汽车股份有限公司,安徽 芜湖 241002

  • 出版日期:2025-06-25 发布日期:2024-12-13

Consider Fuel Cell Vehicle Energy Management Strategies for Air Conditioning Systems

#br#

ZHAO Youqun1  XU Zhou1  YU Zhihao1  LIN Fen1  HE Kunpeng1, 2  YOU Qingshen2   

  1. 1. School of Energy and Power, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, Jiangsu, China;

    2. Chery New Energy Automobile Co., Ltd.,Wuhu 241002, Anhui, China

  • Online:2025-06-25 Published:2024-12-13

摘要:

在燃料电池混合动力汽车的实际运行中,空调系统为驾驶员和乘客提供舒适的环境,然而空调系统的运行效果与汽车实际运行的能量分配相互影响,因此需要将空调系统考虑进能量管理策略,设计出在满足舱内温度舒适性要求的情况下兼顾整车氢耗经济性的能量管理策略。首先在建立整车动力学模型的基础上,利用热平衡方程建立热泵空调系统模型和热负荷模型。然后,采用结合了双Q网络和深度确定性策略梯度的优先经验采样的双延迟深度确定性策略梯度(TD3-PER)算法,建立考虑空调系统能耗与车辆运行需求能量管理策略。最后在NEDC典型工况下进行仿真得出:TD3-PER能量管理策略下的空调系统能够使舱温在100秒内迅速达到并维持在22℃到26℃的舒适范围,满足制冷/制热效果保证车舱温度舒适性,验证了在考虑空调系统时TD3-PER能量管理策略的可行性;在空调系统制冷/制热时,基于TD3-PER算法的策略比传统的深度确定性策略梯度(DDPG)算法的策略的功率分配情况能够延长燃料电池和蓄电池使用寿命,且在制冷/制热时根据氢耗量分别可提高2.59%和3.58%的经济性,验证了基于TD3-PER算法能量管理策略在降低氢耗量、提高整车经济性方面相较于传统算法更具优势。

关键词: 双能源燃料电池汽车, 空调系统, 能量管理策略, TD3-PER, DDPG

Abstract:

In the actual operation of fuel cell hybrid electric vehicles, the air conditioning system provides a comfortable environment for drivers and passengers. However, the operation effect of the air conditioning system interacts with the energy distribution of the actual operation of the vehicle, so it is necessary to consider the air conditioning system into the energy management strategy, and design an energy management strategy that takes into account the hydrogen consumption economy of the vehicle while meeting the comfort requirements of the cabin temperature. Firstly, based on the vehicle dynamics model, the heat balance equation is used to establish the heat pump air-conditioning system model and heat load model. Then, the dual delay depth deterministic strategy gradient (TD3-PER) algorithm combining the double Q network and the depth deterministic strategy gradient is used to establish the energy management strategy considering the energy consumption of the air conditioning system and the vehicle operation demand. Finally, the simulation results under typical NEDC working conditions show that the air conditioning system under the TD3-PER energy management strategy can rapidly reach and maintain the cabin temperature within a comfortable range of 22℃ to 26℃ within 100 seconds, satisfying the cooling/heating effect and ensuring the cabin temperature comfort, which verifies the feasibility of the TD3-PER energy management strategy when considering the air conditioning system. In cooling/heating of air conditioning system, the strategy based on TD3-PER algorithm can prolong the service life of fuel cell and battery compared with the strategy based on the traditional depth Deterministic strategy gradient (DDPG) algorithm, and improve the economy of hydrogen consumption in cooling/heating by 2.59% and 3.58%, respectively. It is verified that the energy management strategy based on TD3-PER algorithm has more advantages than the traditional algorithm in reducing hydrogen consumption and improving vehicle economy.

Key words: dual-energy fuel cell vehicle, air conditioning system, energy management strategy, TD3-PER, DDPG