华南理工大学学报(自然科学版) ›› 2025, Vol. 53 ›› Issue (6): 66-76.doi: 10.12141/j.issn.1000-565X.240243

• 车辆工程 • 上一篇    下一篇

驾驶性主客观综合评价方法在起步工况下的应用

吴飞(), 孙现魁, 王鹏程   

  1. 武汉理工大学 机电工程学院,湖北 武汉 430070
  • 收稿日期:2024-05-22 出版日期:2025-06-10 发布日期:2024-11-01
  • 作者简介:吴飞(1973—),男,博士,教授,主要从事汽车零部件性能检测等研究。E-mail: wufei@whut.edu.cn
  • 基金资助:
    国家自然科学基金项目(52275505)

Application of Subjective and Objective Comprehensive Evaluation Method of Drivability in Starting Conditions

WU Fei(), SUN Xiankui, WANG Pengcheng   

  1. School of Mechanical and Electrical Engineering,Wuhan University of Technology,Wuhan 430070,Hubei,China
  • Received:2024-05-22 Online:2025-06-10 Published:2024-11-01
  • Supported by:
    the National Natural Science Foundation of China(52275505)

摘要:

为提高驾驶性评价方法的准确性与可靠性,提出一种融合极限梯度提升算法、麻雀搜索算法与沙普利解释算法的主客观综合评价方法。该研究以车辆起步工况为目标,定义车辆起步工况下的9项客观评价指标,完善驾驶性起步工况的评价体系;提出以极限梯度提升算法双向映射客观评价指标值与主观评分,为避免驾驶性评价模型陷入局部最优解,采用麻雀搜索算法对极限梯度提升算法的核心超参数进行快速寻优,使得驾驶性评价模型在数据集扩充后具有自主迭代能力;最后利用沙普利解释算法对映射模型进行特征归因,量化客观评价指标对驾驶性评价的影响权重,构建兼具预测准确性、稳定性与可解释性的驾驶性综合评价模型。应用该方法,结合国内外主流驾驶性综合评价进行多次道路试验,对比分析结果表明:所提出的驾驶性评价模型的平均绝对误差、均方根误差和决定系数均优于BP神经网络、随机森林与极限学习机等主流驾驶性评价算法,映射准确性相较于其他方法明显提升,且该驾驶性综合评价方法具有一定的可解释性,对驾驶性评价中的主客观综合评价具有参考意义。

关键词: 驾驶性, 起步工况, 评价方法, 极限梯度提升算法, 沙普利解释算法

Abstract:

To improve the accuracy and reliability of the drivability evaluation method,this study proposed a subjective and objective comprehensive evaluation method integrating the Extreme Gradient Boosting (XGBoost) algorithm, the Sparrow Search Algorithm (SSA) and the Shapley Additive Explanations (SHAP). Focusing on vehicle starting conditions, the study defined nine objective evaluation indicators to refine the drivability assessment system for vehicle start-up performance. A bidirectional mapping model between objective metrics and subjective scores was established using the XGBoost algorithm. To avoid local optima in the drivability evaluation model, the SSA was employed to efficiently optimize the core hyperparameters of XGBoost, thereby enabling the model to iteratively self-improve as the dataset expands. Finally, the SHAP was used to attribute the features of the mapping model, quantify the influence weight of objective evaluation indicators on the evaluation of drivability, and construct a comprehensive evaluation model of drivability with prediction accuracy, stability and interpretability. The proposed method was validated through multiple road tests that incorporate both domestic and international mainstream drivability evaluation frameworks. Comparative analysis shows that the proposed model outperforms mainstream approaches such as BP neural networks, random forests, and extreme learning machines (ELMs) in terms of MAE (Mean Absolute Error), RMSE (Root Mean Square Error), and the coefficient of determination. The mapping accuracy is significantly improved, and the method’s interpretability makes it a valuable reference for integrating subjective and objective assessments in drivability evaluation.

Key words: drivability, starting condition, evaluation method, limit gradient lifting algorithm, Shapley additive explanations

中图分类号: