1 |
RONNEBERGER O, FISCHER P, BROX T .U-Net:convolutional networks for biomedical image segmentation[C]∥Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015.Munich:Springer International Publishing,2015:234-241.
|
2 |
LV P, WANG J, ZHANG X,et al .Deep supervision and atrous inception-based U-Net combining CRF for automatic liver segmentation from CT[J].Scientific Reports,2022,12(1):16995/1-14.
|
3 |
GUO C, SZEMENYEI M, YI Y,et al .SA-UNet:spatial attention U-Net for retinal vessel segmentation[C]∥Proceedings of 2020 25th International Conference on Pattern Recognition.Milan:IEEE,2021:1236-1242.
|
4 |
CAI Z, XIN J, SHI P,et al .DSTUNet: UNet with efficient dense SWIN transformer pathway for medical image segmentation[C]∥Proceedings of 2022 IEEE 19th International Symposium on Biomedical Imaging.Kolkata:IEEE,2022:1-5.
|
5 |
KIRAN I, RAZA B, IJAZ A,et al .DenseRes-UNet: segmentation of overlapped/clustered nuclei from multi organ histopathology images[J].Computers in Bio-logy and Medicine,2022,143:105267/1-15.
|
6 |
ANSARI M Y, YANG Y, BALAKRISHNAN S,et al .A lightweight neural network with multiscale feature enhancement for liver CT segmentation[J].Scientific reports,2022,12(1):14153/1-12.
|
7 |
ÖZCAN F, UÇAN O N, KARAÇAM S,et al .Fully automatic liver and tumor segmentation from CT image using an AIM-Unet[J].Bioengineering,2023,10(2):215/1-21.
|
8 |
AMER A, LAMBROU T, YE X .MDA-Unet: a multi-scale dilated attention U-Net for medical image segmentation[J].Applied Sciences,2022,12(7):3676/1-18.
|
9 |
IBTEHAZ N, KIHARA D .ACC-UNet: a completely convolutional UNet model for the 2020s[C]∥Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention.Cham:Springer Nature Switzerland,2023:692-702.
|
10 |
KONAR D, BHATTACHARYYA S, GANDHI T K,et al .3-D quantum-inspired self-supervised tensor network for volumetric segmentation of medical images[J].IEEE Transactions on Neural Networks and Learning Systems,2024,35(8):10312-10325.
|
11 |
SELVAN R, DAM E B, PETERSEN J .Segmenting two-dimensional structures with strided tensor networks[C]∥Proceedings of the 27th International Conference on Information Processing in Medical ImagingVirtual Event:Springer International Publishing,2021:401-414.
|
12 |
DENTON E L, ZAREMBA W, BRUNA J,et al .Exploiting linear structure within convolutional networks for efficient evaluation[C]∥Proceedings of the Confe-rence on Advances in Neural Information Processing Systems.Montreal:MIT Press,2014:1269-1277.
|
13 |
CHENG Z, LI B, FAN Y,et al .A novel rank selection scheme in tensor ring decomposition based on reinforcement learning for deep neural networks[C]∥Proceedings of 2020 IEEE International Conference on Acoustics,Speech and Signal Processing (ICASSP).Barcelona:IEEE,2020:3292-3296.
|
14 |
LIU Y, NG M K .Deep neural network compression by tucker decomposition with nonlinear response[J].Knowledge-Based Systems,2022,241:108171/1-12.
|
15 |
FALASCHETTI L, MANONI L, TURCHETTI C .A low-rank CNN architecture for real-time semantic segmentation in visual slam applications[J].IEEE Open Journal of Circuits and Systems,2022,3:115-133.
|
16 |
WANG J, LI S, YU L,et al .SDPN: a slight dual-path network with local-global attention guided for medical image segmentation[J].IEEE Journal of Biomedical and Health Informatics,2023,27(6):2956-2967.
|
17 |
CHEN W, ZHU X, SUN R,et al .Tensor low-rank reconstruction for semantic segmentation[C]∥Proceedings of the 16th European Conference on Computer Vision (ECCV 2020).Glasgow:Springer International Publishing,2020:52-69.
|
18 |
FAN X, LU Y, HOU J,et al .DMC-UNet-based segmentation of lung nodules[J].IEEE Access,2023,11:3322437/1-18.
|
19 |
JHA D, SMEDSRUD P H, RIEGLER M A,et al .RseUNet++: an advanced architecture for medical ima-ge segmentation[C]∥Proceedings of 2019 IEEE International Symposium on Multi-Media.San Diego:IEEE,2019:225-2255.
|
20 |
WANG J, LV P, WANG H,et al .SAR-UNet:squeeze-and-excitation block and atrous spatial pyramid pooling based residual U-Net for automatic liver segmentation in computed tomography[J].Computer Me-thods and Programs in Biomedicine,2021,208:106268/1-16.
|
21 |
FAN T, WANG G, LI Y,et al .MA-Net: a multi-scale attention network for liver and tumor segmentation[J].IEEE Access,2020,8:179656-179665.
|
22 |
LI X, CHEN H, QI X,et al .H-DenseUNet:hybrid densely connected UNet for liver and tumor segmentation from CT volumes[J].IEEE transactions on Medical Imaging,2018,37(12):2663-2674.
|
23 |
SHAO Y, ZHOU K, ZHANG L .CSSNet: cascaded spatial shift network for multi-organ segmentation[J].Computers in Biology and Medicine,2024,170:107955/1-14.
|
24 |
LIANG B, TANG C, ZHANG W,et al .N-Net: an UNet architecture with dual encoder for medical image segmentation[J].Signal,Image and Video Processing,2023,17(6):3073-3081.
|
25 |
XIE J, ZHU R, WU Z,et al .FFUNet: a novel feature fusion makes strong decoder for medical image segmentation[J].IET Signal Processing,2022,16(5):501-514.
|
26 |
XIAO X, LIAN S, LUO Z,et al .Weighted ResUNet for high-quality retina vessel segmentation[C]∥Proceedings of 2018 9th International Conference on Information Technology in Medicine and Education.Hangzhou:IEEE,2018:327-331.
|
27 |
OKTAY O, SCHLEMPER J, FOLGOC L L,et al .AttentionUNet: learning where to look for the pancreas[EB/OL].(2018-04-11)[2024-08-30]..
|
28 |
ZHOU Z, RAHMAN SIDDIQUEE M M, TAJBAKHSH N,et al .UNet++: a nested U-Net architecture for medical image segmentation[C]∥Proceedings of the 4th International Workshop on Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support.Granada:Springer International Publishing,2018:3-11.
|
29 |
HUANG H, LIN L, TONG R,et al .UNet3+: a full-scale connected UNet for medical image segmentation[C]∥Proceedings of 2020 IEEE International Conference on Acoustics,Speech and Signal Processing.Barcelona:IEEE,2020:1055-1059.
|
30 |
RUAN J, XIE M, XIANG S,et al .MEWUNet: multi-axis representation learning in frequency domain for medical image segmentation[EB/OL].(2022-10-25)[2024-08-30]..
|
31 |
CHEN J, LU Y, YU Q,et al .TransUNet: transfor-mers make strong encoders for medical image segmentation[EB/OL].(2021-02-08)[2024-08-30]..
|
32 |
HUANG X, DENG Z, LI D,et al .MISSFormer: an effective transformer for 2d medical image segmentation[J].IEEE Transactions on Medical Imaging,2022,42(5):1484-1494.
|