华南理工大学学报(自然科学版) ›› 2025, Vol. 53 ›› Issue (5): 94-108.doi: 10.12141/j.issn.1000-565X.240439

• 计算机科学与技术 • 上一篇    下一篇

基于多尺度特征融合与重构卷积的肝肿瘤图像分割方法

马金林1,2, 酒志青2, 马自萍3, 夏明格2, 张凯2, 程叶霞4, 马瑞士2   

  1. 1.北方民族大学 图形图像智能信息处理国家民委重点实验室,宁夏 银川 750021
    2.北方民族大学 计算机科学与工程学院,宁夏 银川 750021
    3.北方民族大学 数学与信息科学学院,宁夏 银川 750021
    4.中国移动通信有限公司,北京 100033
  • 收稿日期:2024-09-02 出版日期:2025-05-25 发布日期:2024-12-02
  • 通信作者: 酒志青(2000—),女,硕士生,主要从事图像识别研究。 E-mail:2313795280@qq.com
  • 作者简介:马金林(1976—),男,博士,副教授,主要从事计算机视觉、图像识别、计算机图形学等研究。E-mail: 624160@qq.com
  • 基金资助:
    国家自然科学基金项目(62462001);宁夏回族自治区自然科学基金项目(2024AAC03147);北方民族大学中央高校基本科研业务费专项资金项目(2023ZRLG02);宁夏回族自治区高等学校科学研究项目(NYG2024066)

A Liver Tumor Image Segmentation Method Based on Multi-Scale Feature Fusion and Reconstruction Convolution

MA Jinlin1,2, JIU Zhiqing2, MA Ziping3, XIA Mingge2, ZHANG Kai2, CHENG Yexia4, MA Ruishi2   

  1. 1.Key Laboratory of Intelligent Information Processing of Image and Graphics,North Minzu University,Yinchuan 750021,Ningxia,China
    2.School of Computer Science and Engineering,North Minzu University,Yinchuan 750021,Ningxia,China
    3.School of Mathematics and Information Science,North Minzu University,Yinchuan 750021,Ningxia,China
    4.China Mobile Communications Corporation,Beijing 100033,China
  • Received:2024-09-02 Online:2025-05-25 Published:2024-12-02
  • Contact: 酒志青(2000—),女,硕士生,主要从事图像识别研究。 E-mail:2313795280@qq.com
  • About author:马金林(1976—),男,博士,副教授,主要从事计算机视觉、图像识别、计算机图形学等研究。E-mail: 624160@qq.com
  • Supported by:
    the National Natural Science Foundation of China(62462001);the Natural Science Foundation of Ningxia Hui Autonomous Region(2024AAC03147)

摘要:

针对肝肿瘤图像特征表达能力不足和全局上下文信息传递受限的问题,该文提出一种基于改进U-Net的肝肿瘤图像分割方法。首先,设计了一种低秩重构卷积来优化传统卷积运算所导致的大量参数问题,并用其构建使用残差结构改进编解码器的卷积核重构模块,使编码器保留更多的细节信息,并使解码器能更有效地恢复信息,以提升肝肿瘤图像特征的表达能力。然后,为丰富全局上下文信息的传递,设计了三分支空间金字塔池化模块来优化瓶颈结构的信息传递,打破单一路径的限制。接着,设计了多尺度特征融合模块来优化编码器信息的复用机制,增强模型对全局上下文信息的建模能力,并提升其在提取不同尺度肝肿瘤图像特征时的效能。最后,在LiTS2017和3DIRCADb数据集上对该文方法的性能进行了测试。实验结果表明:在LiTS2017数据集上的肝脏图像分割任务中,该文方法的Dice系数和IoU值分别达97.56%和95.25%,在肝肿瘤图像分割任务中的Dice系数和IoU值分别达89.71%和81.58%;在3DIRCADb数据集上的肝脏图像分割任务中,该文方法的Dice系数和IoU值分别达97.63%和95.39%,在肝肿瘤图像分割任务中的Dice系数和IoU值分别达89.62%和81.63%。

关键词: 肝肿瘤图像分割, 卷积核重构, 空间金字塔池化, 多尺度特征融合

Abstract:

Aiming at the problem of insufficient expression ability of liver tumor image features and limited global contextual information transmission, an improved U-Net liver tumor image segmentation method is proposed. Firstly, a low-rank reconstruction convolution is designed to optimize the large number of parameter problems caused by traditional convolution operations, and is used to construct a convolution kernel reconstruction module that uses residual structure to improve the encoder decoder, so that the encoder retains more detailed information and the decoder recovers information more effectively, thereby enhancing the expression ability of liver tumor image features. Then, to enrich the transmission of global contextual information, a three-branch spatial pyramid pooling module is designed to optimize the bottleneck structure of information transmission and to break the limitation of a single path. Secondly, a multi-scale feature fusion module is designed to optimize the reuse mechanism of encoder information, enhance the modeling ability of the model for global contextual information, and improve its efficiency in extracting liver tumor image features in different scales. Finally, the performance of the proposed method is tested on LiTS2017 and 3DIRCADb datasets. Experimental results show that the method achieves a Dice coefficient and an IoU value of 97.56% and 95.25% in the liver image segmentation task on LiTS2017 dataset, and 89.71% and 81.58% in the liver tumor image segmentation task. Moreover, the Dice coefficient and IoU value in the liver image segmentation task on 3DIRCADb dataset respectively reach 97.63% and 95.39%, while respectively reach 89.62% and 81.63% in the liver tumor image segmentation task.

Key words: liver tumor image segmentation, convolutional kernel reconstruction, spatial pyramid pooling, multi-scale feature fusion

中图分类号: