华南理工大学学报(自然科学版) ›› 2025, Vol. 53 ›› Issue (5): 109-117.doi: 10.12141/j.issn.1000-565X.240242

• 计算机科学与技术 • 上一篇    下一篇

基于图神经网络的IL-6诱导肽预测方法

曹瑞芬1, 胡维玲1, 李强生1, 宾艳南2, 郑春厚3   

  1. 1.安徽大学 计算机科学与技术学院,安徽 合肥 230601
    2.安徽大学 物质科学与信息技术研究院,安徽 合肥 230601
    3.安徽大学 人工智能学院,安徽 合肥 230601
  • 收稿日期:2024-05-22 出版日期:2025-05-25 发布日期:2024-11-08
  • 作者简介:曹瑞芬(1981—),女,博士,教授,博士生导师,主要从事人工智能、医学图像处理和生物医学信息处理等研究。E-mail: rfcao@ahu.edu.cn
  • 基金资助:
    国家自然科学基金项目(62373001);国家重点研发计划项目(2020YFA0908700);安徽省高校协同创新项目(GXXT-2021-030)

Prediction Method of IL-6 Inducing Peptides Based on Graph Neural Network

CAO Ruifen1, HU Weiling1, LI Qiangsheng1, BIN Yannan2, ZHENG Chunhou3   

  1. 1.School of Computer Science and Technology,Anhui University,Hefei 230601,Anhui,China
    2.Institutes of Physical Science and Information Technology,Anhui University,Hefei 230601,Anhui,China
    3.School of Artificial Intelligence,Anhui University,Hefei 230601,Anhui,China
  • Received:2024-05-22 Online:2025-05-25 Published:2024-11-08
  • About author:曹瑞芬(1981—),女,博士,教授,博士生导师,主要从事人工智能、医学图像处理和生物医学信息处理等研究。E-mail: rfcao@ahu.edu.cn
  • Supported by:
    the National Natural Science Foundation of China(62373001);the National Key Research and Development Program of China(2020YFA0908700)

摘要:

白细胞介素6(简称IL-6)是一种高多效性的糖蛋白因子,可以调节先天性免疫、适应性免疫以及代谢的各个方面,包括糖酵解、脂肪酸氧化和氧化磷酸化等。许多研究已证明,病毒感染患者体内的IL-6表达和释放量显著增加,并且与疾病的严重程度呈正相关,因此,识别IL-6诱导肽并探究其作用机制,对于开发免疫治疗以及疾病严重程度生物标志物具有重要的意义。目前对于IL-6诱导肽的识别大多采用传统的机器学习方法,特征选择与提取较为复杂,且需要依赖领域专家知识。鉴于此,该文提出一种基于图神经网络的IL-6诱导肽预测方法SFGNN-IL6。该方法根据所预测的IL-6诱导肽的结构特征,通过阈值筛选距离信息构建邻接矩阵,结合氨基酸的编码方式(One-hot编码、位置编码和BLOSUM62编码)提取氨基酸节点特征并进行图表示;然后,采用图注意力机制层和图卷积神经网络层,由双通道分别提取多视角特征,既关注节点权重的更新,也考虑节点信息的更新;最后,将两类特征进行融合,用于IL-6诱导肽的分类。实验结果验证了该方法的有效性。

关键词: IL-6诱导肽, 图神经网络, 结构特征, 图注意力机制, 图卷积神经网络

Abstract:

Interleukin-6 (IL-6) is a highly multifunctional glycoprotein factor that can regulate both innate and adaptive immunity as well as various aspects of metabolism, including glycolysis, fatty acid oxidation and oxidative phosphorylation. Many studies have shown that the expression and release of IL-6 in patients infected with viruses significantly increase, and are positively correlated with the severity of the disease. Therefore, identifying IL-6 inducing peptides and exploring their action mechanisms are very important for developing immune therapies and dia-gnostic biomarker for the severity of diseases. Currently, the identification methods of IL-6 inducing peptides mostly use traditional machine learning, in which feature selection and extraction are rather complex, and field expert knowledge are required. In view of this problem, this paper proposes a novel graph neural network-based prediction method of IL-6 inducing peptides named SFGNN-IL6. In this method, the predicted structural characteristics of IL-6 inducing peptides are used to construct the adjacency matrix by screening the distance information according to the threshold, and the node features of amino acids are extracted using One-hot encoding, position encoding and BLOSUM62 encoding, and are then graph-represented. Moreover, graph attention mechanism layers and graph convolutional neural network layers are used as dual channels to separately extract features, considering both the update of node weights and the update of node information. Finally, the two types of features are fused for the classification of IL-6 inducing peptides. Experimental results validate that the proposed method is effective.

Key words: IL-6 inducing peptide, graph neural network, structural feature, graph attention mechanism, graph convolutional neural network

中图分类号: