华南理工大学学报(自然科学版) ›› 2024, Vol. 52 ›› Issue (9): 131-141.doi: 10.12141/j.issn.1000-565X.230753
HE Qingling(), PEI Yulong(
), DONG Chuntong, LIU Jing, PAN Sheng
摘要:
为解决现有智能算法在优化支持向量机识别风险驾驶行为过程中收敛速率缓慢和误差较大的问题。首先,采用Tent映射取代原子搜索优化算法(ASO)种群初始化随机设置的方式,增加原子种群多样性和质量;其次,使用逐维小孔成像反向学习与柯西变异混合机制,提高原子个体择优位置的多样性,克服ASO算法易陷入局部最优和过早收敛的问题;最后,通过引入自适应变螺旋搜寻策略改进原子个体位置更新过程,以提升ASO算法的全局搜索能力,实现全局搜索和局部开发间关系的有效平衡,缓解ASO算法易陷入局部最优和收敛精度不足的问题。以上海北横通道出口匝道车辆轨迹数据为输入,使用混合策略改进ASO算法寻优求解最小二乘支持向量机(LSSVM)参数,构建基于混合策略改进原子搜索优化最小二乘支持向量机IASO-LSSVM的快速路出口匝道风险驾驶行为分类识别模型。数值仿真实验结果表明:IASO算法在12个基准测试函数数值仿真结果的平均值、标准差、最佳适应度和最差适应度等方面均更接近最佳优化值。IASO-LSSVM模型相较于ASO-LSSVM和LSSVM等模型的风险驾驶行为分类识别结果误差指标正确率、精确率、召回率和F1值分别增加11.5~24.5、14.1~29.0、15.1~28.6和14.7~31.2个百分点,且在不同类型风险驾驶行为识别结果中误差变化范围最小。IASO算法参数寻优求解精度和收敛速率优于ASO算法,且IASO-LSSVM模型可用于不同类型风险驾驶行为精准识别,可为车辆行驶轨迹状态合理判别,制定风险驾驶行为预警防控措施提供数据支撑与理论依据。
中图分类号: