华南理工大学学报(自然科学版) ›› 2023, Vol. 51 ›› Issue (3): 13-21.doi: 10.12141/j.issn.1000-565X.220389

所属专题: 2023年能源、动力与电气工程

• 能源、动力与电气工程 • 上一篇    下一篇

整体式微通道换热器的性能分析

甘云华1 刘润溪1 袁辉2 刘锋铭2 李勇3   

  1. 1.华南理工大学 电力学院, 广东 广州 510640
    2.广西自贸区见炬科技有限公司, 广西 钦州 535000
    3.华南理工大学 机械与汽车工程学院, 广东 广州 510640
  • 收稿日期:2022-06-20 出版日期:2023-03-25 发布日期:2022-09-16
  • 通信作者: 甘云华(1979-),男,教授,博士生导师,主要从事微通道传热等研究。 E-mail:ganyh@scut.edu.cn
  • 作者简介:甘云华(1979-),男,教授,博士生导师,主要从事微通道传热等研究。
  • 基金资助:
    广东省基础与应用基础研究基金资助项目(2020B1515020040);中央引导地方科技发展资金项目(桂科ZY22096022);钦州市科学研究与技术开发计划项目(202116601)

Performance Analysis of Integrated Micro-Channel Heat Exchanger

GAN Yunhua1 LIU Runxi1 YUAN Hui2 LIU Fengming2 LI Yong3   

  1. 1.School of Electric Power Engineering,South China University of Technology,Guangzhou 510640,Guangdong,China
    2.Guangxi Free Trade Zone Jianju Technology Co. ,Ltd. ,Qinzhou 535000,Guangxi,China
    3.School of Mechanical and Automotive Engineering,South China University of Technology,Guangzhou 510640,Guangdong,China
  • Received:2022-06-20 Online:2023-03-25 Published:2022-09-16
  • Contact: 甘云华(1979-),男,教授,博士生导师,主要从事微通道传热等研究。 E-mail:ganyh@scut.edu.cn
  • About author:甘云华(1979-),男,教授,博士生导师,主要从事微通道传热等研究。
  • Supported by:
    Guangdong Basic and Applied Basic Research Foundation(2020B1515020040);the Project of Central Guidance and Local Science and Technology Development Fund(Guike ZY22096022)

摘要:

为了提升整体式微通道换热器的整体性能,建立了整体式微通道换热器的稳态换热模型,研究了结构参数与运行参数对其的影响规律。整体式微通道换热器以R245fa为工作工质,并在实验验证模型准确性的基础上,利用该模型模拟研究了换热器风量和换热器热管间距对系统整体热阻和空气侧压降等参数的影响。研究结果表明,当微通道换热器的蒸发段风量为0.41 m3/s、冷凝段风量为0.21 m3/s时,换热器的系统整体热阻为0.038 0 m2·K/W;随着冷凝段和蒸发段循环风量的增加,微通道换热器空气侧的压降增加,整体热阻均降低;微通道换热器的整体热阻的下降趋势随着风量的增加而逐渐减弱,得出在本研究范围内,蒸发段风量取0.45 m3/s、冷凝段风量取0.69 m3/s为宜;随着整体式微通道换热器热管间距的增加,微通道换热器整体热阻呈上升趋势,微通道换热器在蒸发段空气侧的压降呈下降趋势。当换热器热管间距为6 mm时,微通道换热器综合性能达到最佳。研究结果对通信基站冷却设备设计及微通道换热器结构与控制参数优化设计提供了参考依据。

关键词: 微通道热管, 换热器, 传热, 压降

Abstract:

In order to improve the performance of the integrated micro-channel heat exchanger, this study established the steady-state heat transfer model of an integrated micro-channel heat exchanger, and studied the influence law of the structural parameters and operation parameters on it. The integrated micro-channel heat exchanger used R245fa as working medium. It studied the effects of heat exchanger and heat exchanger heat pipe spacing on the total thermal resistance and air-side pressure drop of the system by using the model, which was verified by experiments previously. The results show that when the evaporation section air volume of the integrated micro-channel heat exchanger is 0.41 m3/s, condensing section air volume is 0.21 m3/s and the total thermal resistance of the heat exchanger system is 0.038 0 m2·K/W. With the increase of circulating air volume in the condensing section and the evaporation section, the air-side pressure drop of the micro-channel heat exchanger increases, and the total thermal resistance decreases. The downtrend of the total thermal resistance of the micro-channel heat exchanger decreases gradually with the increase of air volume. In scope of this research, it is concluded that the appropriate air volume in the evaporation section is 0.45 m3/s, and that in the condensation section is 0.69 m3/s. With the increase of the integrated micro-channel heat exchanger heat pipe spacing, the total thermal resistance of the micro-channel heat exchanger increases, and the air-side pressure drop of the micro-channel heat exchanger decreases in the evaporation section. When the heat exchanger heat pipe spacing is 6 mm, the comprehensive performance of the integrated micro-channel heat exchanger is the best. The research results provide a reference for the design of cooling equipment for communication base stations and the optimization of the structure and control parameters of the micro-channel heat exchanger.

Key words: micro-channel heat pipe, heat exchanger, heat transfer, pressure drop

中图分类号: