华南理工大学学报(自然科学版) ›› 2023, Vol. 51 ›› Issue (1): 61-68.doi: 10.12141/j.issn.1000-565X.220099

所属专题: 2023年材料科学与技术

• 材料科学与技术 • 上一篇    下一篇

弧形双箭头蜂窝面内压缩性能试验与仿真

亓昌1,2 丁晨1 刘海涛3 江峰陈上1 杨姝1,2   

  1. 1.大连理工大学 汽车工程学院/工业装备结构分析国家重点实验室,辽宁 大连 116024
    2.大连理工大学 宁波研究院,浙江 宁波 315016
    3.中国北方车辆研究所,北京 100072
  • 收稿日期:2022-03-06 出版日期:2023-01-25 发布日期:2023-01-02
  • 通信作者: 杨姝(1978-),女,副教授,主要从事汽车安全与轻量化研究。 E-mail:yangshu@dlut.edu.cn
  • 作者简介:亓昌(1978-),男,教授,博士生导师,主要从事汽车安全与轻量化研究。E-mail:qichang@dlut.edu.cn.
  • 基金资助:
    国家重点研发计划项目(2021YFB3702004);大连理工大学中央高校基本科研业务费专项资金资助项目(DUT20LAB132)

Experiment and Simulation of In-Plane Crushing Performance of Circular Double-Arrow Honeycomb

QI Chang1,2 DING ChenLIU Haitao3 JIANG Feng1 CHEN Shang1 YANG Shu1,2   

  1. 1.State Key Laboratory of Structural Analysis for Industrial Equipment / School of Automotive Engineering,Dalian University of Technology,Dalian 116024,Liaoning,China
    2.Ningbo Research Institute,Dalian University of Technology,Ningbo 315016,Zhejiang,China
    3.China North Vehicle Research Institute,Beijing 100072,China
  • Received:2022-03-06 Online:2023-01-25 Published:2023-01-02
  • Contact: 杨姝(1978-),女,副教授,主要从事汽车安全与轻量化研究。 E-mail:yangshu@dlut.edu.cn
  • About author:亓昌(1978-),男,教授,博士生导师,主要从事汽车安全与轻量化研究。E-mail:qichang@dlut.edu.cn.
  • Supported by:
    the National Key Research and Development Program of China(2021YFB3702004)

摘要:

蜂窝结构作为一种仿生材料,在抗冲击吸能、轻量化等多个领域优势显著,得到了广泛研究。其中,双箭头蜂窝(Double-Arrow Honeycomb,DAH)在压缩载荷下较六边形蜂窝的平台应力更高,吸能性更好。为了进一步提升DAH的比吸能(Specific Energy Absorption,SEA),文中通过引入双弧形边代替DAH原有直边,提出一种弧形双箭头蜂窝(Circular Double-Arrow Honeycomb,CDAH),采用3D打印制备了CDAH样件并进行了准静态压缩试验;同时,基于有限元软件建立了CDAH的数值仿真模型,通过与试验结果的对比验证了模型的准确性;利用冲击波理论推导了CDAH的临界冲击速度,并结合验证后的数值模型研究了面内不同冲击速度下CDAH的动态响应。试验和仿真结果均表明:与DAH相比,CDAH的平台应力更高,比吸能也更大。其中,当应变达到0.6时,CDAH的SEA相较于DAH提升了71%,并且在中高速冲击下呈现明显的倒“V”和倒“U”形变形带,显示出良好的负泊松比特性;随着冲击速度提高,CDAH的平台应力与比吸能均显著提升,100 m/s下的平台应力是5 m/s下的3倍,这有助于CDAH在高速抗冲击防护中应用。

关键词: 双箭头蜂窝, 负泊松比, 动态压溃, 比吸能, 拉胀材料

Abstract:

As a kind of bionic material, honeycomb structure has remarkable advantages in many fields, such as impact energy absorption, lightweight and so on. Among them, the plateau stress and energy absorption of double-arrow honeycomb (DAH) are higher than that of hexagonal honeycomb under compression load. In order to further improve the specific energy absorption (SEA) of DAH, this paper proposed a circular double-arrow honeycomb (CDAH) by introducing double arc edges to replace the original straight edges of DAH, and the CDAH samples were prepared by 3D printing and quasi-static compression tests were carried. At the same time, the numerical simulation model of CDAH was established based on finite element software, and the accuracy of the model was verified by comparing with the experimental results. The critical impact velocity of CDAH was derived by using the impact wave theory, and the dynamic response of CDAH under different impact velocities in the plane was studied with the verified numerical model. The experimental and simulation results show that, as compared with DAH, both the plateau stress and the energy absorption of CDAH are higher. When the strain reaches 0.6, the SEA of CDAH is 71% higher than that of DAH. And there are obvious inverted “V” and inverted “U” shaped deformation bands under medium and high speed impact, showing good characteristics of negative Poisson's ratio. With the increase of impact speed, the plateau stress and specific energy absorption of CDAH are significantly increased, and the plateau stress under 100 m/s impact is 3 times higher than that under 5 m/s impact, which is helpful to the application in high speed impact protection.

Key words: double-arrow honeycomb, negative Poisson’s ratio, dynamic crushing, specific energy absorption, auxetic material

中图分类号: