华南理工大学学报(自然科学版) ›› 2023, Vol. 51 ›› Issue (2): 1-9.doi: 10.12141/j.issn.1000-565X.220178

所属专题: 2023年机械工程

• 机械工程 • 上一篇    下一篇

基于最小化各向同性误差的LiDAR-双目相机标定方法

陈忠 刘梓琛 张宪民   

  1. 华南理工大学 机械与汽车工程学院,广东 广州 510640
  • 收稿日期:2022-04-06 出版日期:2023-02-25 发布日期:2023-02-01
  • 通信作者: 陈忠(1968-),男,博士,教授,主要从事柔顺机构动力、机器视觉机器及其应用、精密测量和故障诊断研究。 E-mail:mezhchen@scut.edu.cn
  • 作者简介:陈忠(1968-),男,博士,教授,主要从事柔顺机构动力、机器视觉机器及其应用、精密测量和故障诊断研究。
  • 基金资助:
    国家自然科学基金资助项目(51875204);广东省自然科学基金资助项目(2020A1515011543)

LiDAR-Binocular Camera Calibration by Minimizing LiDAR Isotropic Error

CHEN Zhong LIU Zichen ZHANG Xianmin   

  1. School of Mechanical and Automotive Engineering,South China University of Technology,Guangzhou 510640,Guangdong,China
  • Received:2022-04-06 Online:2023-02-25 Published:2023-02-01
  • Contact: 陈忠(1968-),男,博士,教授,主要从事柔顺机构动力、机器视觉机器及其应用、精密测量和故障诊断研究。 E-mail:mezhchen@scut.edu.cn
  • About author:陈忠(1968-),男,博士,教授,主要从事柔顺机构动力、机器视觉机器及其应用、精密测量和故障诊断研究。
  • Supported by:
    the National Natural Science Foundation of China(51875204);the Natural Science Foundation of Guangdong Province(2020A1515011543)

摘要:

LiDAR(Laser Imaging,Detection,and Ranging,激光雷达)与双目相机的多模态数据融合是3D重建领域的一个重要研究方向,两种传感器各有优缺点,通过多模态数据融合可以实现互补,获得更好的重建效果。为了实现数据融合,首先需要将两种数据统一到同一个坐标系下,LiDAR与相机之间外参的高精度标定结果对后续的3D重建十分重要。在LiDAR与相机的外参标定过程中,受LiDAR点云的稀疏性与其定位误差的影响,提取精确的特征点并构建正确的点对应关系是一个挑战性的问题。此外,LiDAR在球坐标系下完成测量工作,而大多数标定方法忽略这一特性,直接使用笛卡尔坐标测量结果进行标定,引入了沿坐标轴各向异性分布的误差,导致标定精度下降。针对该问题,有研究者提出了各向异性权重方法,但仍存在一些缺陷。文中提出了一种最小化LiDAR球坐标误差的LiDAR与双目相机标定方法。首先,提出了一种使用形心特征点的新的标定板,改善特征点的提取精度;其次,将各向异性的LiDAR笛卡尔坐标误差转换为各向同性的球坐标误差,直接最小化球坐标误差求解外参。实验研究表明,本文提出的各向同性误差法相比各向异性权重方法保证求解结果为全局最优,且在牺牲部分精度的前提下所需标定样本数大幅减少,在最优标定误差为2.75 mm的情况下牺牲3.6%的精度能够减少约54.5%的数据量。

关键词: LiDAR, 双目相机, 各向异性, 标定

Abstract:

Multi-modal data fusion of LiDAR (Laser Imaging, Detection, and Ranging) and binocular camera is important in the research on 3D reconstruction. The two sensors have their own advantages and disadvantages, and they can complement each other through data fusion to obtain better reconstruction results. In order to achieve data fusion, firstly it is necessary to unify the two data into the same coordinate system. The calibration results of the external parameters between the LiDAR and the camera are very important to 3D reconstruction. Due to sparse LiDAR point cloud and its positioning error, it is a challenge to extract feature points accurately for constructing accurate point correspondences when calibrating extrinsic parameters between LiDAR and stereo camera. In addition, most calibration methods ignore that LiDAR works on spherical coordinate system and directly use the Cartesian coordinate measurement results for calibration, which introduces anisotropic coordinates error and reduces the calibration accuracy. This paper proposed a calibration method by minimizing isotropic spherical coordinate error. Firstly, a novel calibration object using centroid feature points was proposed to improve the extraction accuracy of feature points. Secondly, the anisotropic LiDAR Cartesian coordinate error were convert into the isotropic spherical coordinate error, and the extrinsic parameters were solved through directly minimizing the spherical coordinate error. The experiments show that the proposed method has advantages over the anisotropic weighting method. The method ensures that the solution is globally optimal and the number of calibration samples required is greatly reduced on the premise of sacrificing some accuracy. With the optimal calibration error of 2.75 mm, the amount of calibration data can be reduced by about 54.5% by sacrificing 3.6% accuracy using the proposed method.

Key words: LiDAR, binocular camera, anisotropic, calibration

中图分类号: