华南理工大学学报(自然科学版) ›› 2018, Vol. 46 ›› Issue (5): 125-134.doi: 10.3969/j.issn.1000-565X.2018.05.017

• 机械工程 • 上一篇    下一篇

基于PIV试验的水介质液力偶合器涡轮流场仿真评价

柴博森1, 2 项玥3 刘勇1† 王志豪1 张雅超1 刘思远1   

  1. 1. 吉林大学 机械与航空航天工程学院,吉林 长春 130022; 2. 中机试验装备股份有限公司,吉林 长春 130103; 3. 吉林省产品质量监督检验院,吉林 长春 130103
  • 收稿日期:2017-10-17 修回日期:2018-02-28 出版日期:2018-05-25 发布日期:2018-04-03
  • 通信作者: 刘勇( 1981-) ,男,副教授,主要从事机械设计及理论研究 E-mail:yongliu@jlu.edu.cn
  • 作者简介:柴博森( 1984-) ,男,博士后,副教授,主要从事液力传动与流场可视化研究
  • 基金资助:
    国家自然科学基金资助项目( 51405184) ;吉林省科技发展计划项目( 20160520070JH) ; 吉林省教育厅“十三五” 科学技术项目( JJKH20180139KJ) ;吉林大学国防预研基金项目( 419140100076) 

Evaluation of Flow Field Simulation of Turbine in Water-Medium Hydrodynamic Coupling Based on PIV Experiment
 

 CHAI Bosen1, 2 XIANG Yue3 LIU Yong1 WANG Zhihao1 ZHANG Yachao1 LIU Siyuan1   

  1.  1. School of Mechanical and Aerospace Engineering,Jilin University,Changchun 130022,Jilin,China; 2. Sinotest Equipment Co. ,Ltd. ,Changchun 130103,Jilin,China; 3. Jilin Province Product Quality Supervision Test Institute,Changchun 130103,Jilin,China
  • Received:2017-10-17 Revised:2018-02-28 Online:2018-05-25 Published:2018-04-03
  • Contact: 刘勇( 1981-) ,男,副教授,主要从事机械设计及理论研究 E-mail:yongliu@jlu.edu.cn
  • About author:柴博森( 1984-) ,男,博士后,副教授,主要从事液力传动与流场可视化研究
  • Supported by:
     Supported by National Natural Science Foundation of China( 51405184) and the Science and Technology Development Plan Project of Jilin Province( 20160520070JH) 

摘要: 为揭示水介质液力偶合器涡轮流场的特征及演化规律,基于计算流体动力学 ( CFD) 技术,采用4 种湍流模型( DES、 DDES、 IDDES、 LES) 仿真制动和牵引工况下的涡轮 流场结构. 通过粒子图像测速( PIV) 试验,采用静态、动态图像标定方法实测涡轮流场图 像. 通过 PIV 流场试验结果与 CFD 仿真结果的对比评价4 种湍流模型的适用性. 结果表 明:制动工况下, LES 模型对主流区域多尺度漩涡流场结构的仿真结果趋于真实,流速为 3. 52 ~3. 81m/s,涡量为480 ~540s -1; IDDES 模型对叶片近壁面区域流速场的仿真表现 卓越,流速为 3. 14 ~3. 51 m/s,而 DES 模型对该区域内涡量场的仿真较好,涡量为 500 ~ 570s -1. 牵引工况下, DDES 和 IDDES 模型的仿真结果失真; DES 模型对主流区域漩涡流 场结构的仿真效果不如 LES 模型,但是能够体现多尺度涡旋沿圆周方向运动的基本趋 势; LES 模型的仿真结果与 PIV 试验结果吻合,能够体现沿圆周方向运动的多尺度涡旋之 间的相互混合作用,流速为1. 40 ~3. 60m/s,涡量为 30 ~130 s -1. 研究结果可为精确仿真 液力偶合器涡轮流场提供一定的技术指导. 

关键词: 液力偶合器, 湍流模型, 粒子图像测速, 图像标定, 流速场, 涡量场 

Abstract:

 In order to reveal the characteristics and evolution law of multiscale vortex flow field in water medium hydrodynamic coupling based on the CFD technique,four kinds of turbulence models ( DES,DDES,IDDES, LES) were used to simulate the internal multiscale vortex flow field of turbine in hydrodynamic coupling in braking and traction conditions. The flow images of internal flow field in turbine were collected by particle image velocimetry ( PIV) technology, static and dynamic image calibration methods were used to calculate the flow field under different conditions. The applicability of the four turbulence models was evaluated on the basis of the comparison of PIV experimental results. The results show that under the braking condition,the simulation results of multiscale vortex flow field in mainstream region used by LES turbulence model tend to be true, the flow velocity range is from 3. 52 to 3. 81m/s,and the vorticity range is from 480 to 540s -1. While the simulation results of multiscale vortex flow field in the near-wall region of the blade used by IDDES turbulence model are outstanding in performance, the flow velocity range is from 3. 14 to 3. 51m/s, in this area, simulation results of vortex field used by DES turbulence model are better than those of LES turbulence model,and the vorticity range is from 500 to 570s -1. As far as traction condition is concerned,the simulation results are distorted when DDES turbulence model and IDDES turbulence model are used,and the simulation results of multiscale vortices in mainstream region used by DES turbulence model are not as good as those of LES turbulence model,but it can reflect the basic movement trend of multiscale vortices along the circumferential direction. The simulation results used by LES turbulence model are in good agreement with the PIV experimental results, it is possible to embody the mutual mixing process of these multiscale vortices moving along the circumferential direction, the flow velocity range is from 1. 40 to 3. 60m/s,and the vorticity range is from 30 to 130s -1. It will provide some technical guidance for the precise simulation of hydrodynamic
coupling. 

Key words: hydrodynamic coupling, turbulence model, particle image velocimetry, image calibration, flow velocity field, vortex flow field

中图分类号: