华南理工大学学报(自然科学版) ›› 2023, Vol. 51 ›› Issue (1): 8-15.doi: 10.12141/j.issn.1000-565X.220089

所属专题: 2023年机械工程

• 机械工程 • 上一篇    下一篇

液压驱动仿生捕蝇草柔性抓手的设计与实验研究

李健1 王雨涵1 王扬威1 戴楚彦栾智博1   

  1. 1.东北林业大学 机械工程学院,黑龙江 哈尔滨 150040
    2.哈尔滨工业大学 机械工程学院,黑龙江 哈尔滨 150006
  • 收稿日期:2022-02-28 出版日期:2023-01-25 发布日期:2023-01-02
  • 通信作者: 李健(1985-),男,博士,教授,主要从事机器人技术研究。 E-mail:lijian499@163.com
  • 作者简介:李健(1985-),男,博士,教授,主要从事机器人技术研究。
  • 基金资助:
    国家自然科学基金资助项目(51905084);黑龙江省自然科学基金资助项目(LH2019E008)

Design and Experimental Research of Hydraulically Driven Bionic Venus Flytrap Flexible Gripper

LI Jian1 WANG YuhanWANG Yangwei1 DAI Chuyan2 LUAN Zhibo1   

  1. 1.School of Mechanical Engineering,Northeast Forestry University,Harbin 150040,Heilongjiang,China
    2.School of Mechanical Engineering,Harbin Institute of Technology,Harbin 150006,Heilongjiang,China
  • Received:2022-02-28 Online:2023-01-25 Published:2023-01-02
  • Contact: 李健(1985-),男,博士,教授,主要从事机器人技术研究。 E-mail:lijian499@163.com
  • About author:李健(1985-),男,博士,教授,主要从事机器人技术研究。
  • Supported by:
    the National Natural Science Foundation of China(51905084);the Natural Science Foundation of Heilongjiang Province(LH2019E008)

摘要:

随着科技的发展和生活的需要,柔性抓手因其安全性和柔顺性逐渐成为了研究热点。捕蝇草作为一种能够实现包络抓取的植物,其运动特点对于柔性抓手的抓取运动具有较好的参考性。文中根据软体网格结构和捕蝇草的变形机理,提出了一种由双仿生叶片组成的液压驱动仿生捕蝇草柔性抓手结构。首先基于本构模型提出了完全嵌入式单列网格弯曲角度和压力关系的数学模型,然后基于仿真模型分析了多列网格弯曲角度和压力的关系,确定了柔性抓手0.040 MPa的工作压力。通过分析仿真结果,得出了边缘不完整网格的弯曲角度变化和受力均大于完整网格的结论,证明了不完整网格处是柔性抓手强度的薄弱点。进行了液压驱动和气压驱动仿生叶片的弯曲实验和闭合力实验,证实了在工作压力下液压驱动的性能优于气压驱动,确定了柔性抓手0.010 MPa的准备压力。最后通过适应性实验证明了所设计的柔性抓手能抓取不同形状的物体,证实了最大负载能力达304.3 g。文中设计的液压驱动仿生捕蝇草柔性抓手可以为活体昆虫捕捉和无损采摘提供有效的解决方案,也可为仿生植物机器人的研发提供理论和技术基础。

关键词: 液压驱动, 仿生捕蝇草, 柔性抓手, 仿真, 实验研究

Abstract:

With the development of science and technology and the needs of life, flexible gripper technology has gradually become a research hotspot because of its safety and compliance. As a plant that can realize envelope grasping, the movement characteristics of flytrap grass have strong reference for the grasping movement of flexible grippers. According to the soft mesh structure and the deformation mechanism of the Venus flytrap, this paper proposed a hydraulically driven bionic Venus flytrap flexible gripper structure composed of double bionic blades. Firstly, a mathematical model of the relationship between the bending angle and the pressure of the fully embedded single-column grid was analyzed based on the simulation model, and then the relationship between the bending angle and the pressure of the multi-column grid was analyzed based on the simulation model, and the working pressure of the flexible gripper was determined to be 0.040 MPa. The analysis of simulation results shows that the bending angle change and force of the incomplete edge mesh are greater than that of the complete mesh, which proves that the incomplete mesh is the weak point of the strength of the flexible gripper. The bending experiments and closing force experiments of the hydraulically actuated and pneumatically actuated bionic blades were carried out, and it was proved that the performance of hydraulic actuation was better than that of pneumatic actuation under working pressure, and the ready pressure of the flexible gripper was determined to be 0.010 MPa. Finally, adaptive experiments show that the designed flexible gripper can grasp objects of different shapes, and the maximum load capacity is confirmed to reach 304.3 g. The hydraulically driven bionic Venus flytrap flexible gripper proposed in this paper can provide an effective solution for live insect capture and non-destructive harvesting, as well as a theoretical and technical basis for the research and development of bionic plant robots.

Key words: hydraulic drive, bionic Venus flytrap, flexible gripper, simulation, experimental research

中图分类号: