华南理工大学学报(自然科学版) ›› 2021, Vol. 49 ›› Issue (9): 101-108.doi: 10.12141/j.issn.1000-565X.210288

所属专题: 2021年流体动力与机电控制工程

• 流体动力与机电控制工程 • 上一篇    下一篇

生物气溶胶超细雾化喷嘴结构设计及仿真分析

张榛1,2 虞育松杨文慧陈君汪旭东刘玉杰赵银龙4   

  1. 1.北京交通大学 机械与电子控制工程学院,北京 100044;2北京控制工程研究所,北京 100190;
    3.中国人民解放军军事医学科学院 微生物流行病研究所,北京 100071;4.北京慧荣和科技有限公司,北京 101102
  • 收稿日期:2021-05-10 修回日期:2021-05-26 出版日期:2021-09-25 发布日期:2021-09-01
  • 通信作者: 张榛(1983-),男,高级工程师,主要从事宇航推进、雾化、燃烧技术研究。 E-mail:3203zhen@163.com
  • 作者简介:张榛(1983-),男,高级工程师,主要从事宇航推进、雾化、燃烧技术研究。
  • 基金资助:
    国家重点研发计划项目(2017YFC1200402)

Structural Design and Simulation Analysis of Bioaerosol Ultrafine Atomizer

ZHANG Zhen1,2 YU YusongYANG WenhuiCHEN JunWANG Xudong2 LIU YujieZHAO Yinlong4   

  1. 1.School of Mechanical,Electronic and Control Engineering,Beijing Jiaotong University,Beijing 100044,China;2.Beijing 
    Institute of Control Engineering,Beijing 100190,China;3.Institute for Microbial Epidemiology,Academy of Military Medical 
    Sciences,Beijing 100071,China;4.Beijing Huironghe Technology Co.,Ltd.,Beijing 101102,China
  • Received:2021-05-10 Revised:2021-05-26 Online:2021-09-25 Published:2021-09-01
  • Contact: 张榛(1983-),男,高级工程师,主要从事宇航推进、雾化、燃烧技术研究。 E-mail:3203zhen@163.com
  • About author:张榛(1983-),男,高级工程师,主要从事宇航推进、雾化、燃烧技术研究。
  • Supported by:
    Supported by the National Key Research and Development Program (2017YFC1200402)

摘要: 为了实现复杂生物危害现场病原体的快速侦检,需要制备多样化的生物样品,建立多模态生物光谱数据库,最终实现有针对性的危害病原体快速灭活。其中,雾化喷嘴的设计是制备高质量生物样品的关键技术。该技术可以将液体生物样品雾化成细小雾滴,再通过低温冷冻+升华作用形成生物样品颗粒。通过空气辅助雾化喷嘴的优化设计,可以在不损害生物活性的低流量、低压力条件下,获得微小且均匀的雾化液滴。文中采用RANS+DDM方法对喷雾场进行模拟,对空气辅助雾化喷嘴在常温和低温加热条件下的雾化特性进行了分析模拟。同时,采用LES+VOF方法对近喷孔区域气体旋流对液体射流的扰流作用进行了模拟,分析了射流的雾化机理。最后,使用空气动力学粒度仪对空气辅助雾化喷嘴的雾化效果进行了测试,结果证明:喷嘴的雾化效果良好,可实现平均粒子直径约1μm的超细雾化;通过低温喷雾冷冻干燥制备的生物样品质量达到了设计要求,可以有效地实现大批量生物气溶胶样品的制备,提升生物危害现场病原体的侦检及防御能力。

关键词: 空气辅助雾化喷嘴, 超细雾化, 结构设计, 雾化仿真, 湍流破碎

Abstract: In order to realize the rapid on-site detection for pathogens in complex biological hazards,it is necessary to prepare a variety of biological samples,establish a multimodal biospectral database,and eventually achieve targeted rapid inactivation of pathogens.Ultrafine atomizer design is a key technology to prepare high-quality biological samples.The technology can atomize liquid biological samples into small droplets,and then the bioaerosol particles can be formed after low-temperature freezing and sublimation drying.Through the optimal design of the air-assisted atomizer,the ultrafine and uniform atomization can be obtained under the conditions of low flowrate and low pressure without damaging the biological activity.In this paper,the spray process was simulated by means of RANS+DDM method,and the atomization characteristics of the air-assisted atomizer were analyzed at normal temperature and low temperature with heating power.At the same time,LES+VOF method was also adopted to test the turbulence effect of gas swirling near the nozzle on the liquid fluidics,and the atomization mechanism was analyzed.Moreover,the atomizing effect of the air-assisted atomizer was tested by an aerodynamic particle size tester.The results show that the air-assisted atomizer has good atomizing effect and can realize ultrafine atomization of particles with a diameter of around 1μm.The quality of biological samples prepared by spray-freeze-drying method can meet the design requirements,so it can effectively prepare bioaerosol samples in mass quantities and improve the detection and defense capability for pathogens on the site of biological hazards.

Key words: air-assisted atomizer, ultrafine atomization, structural design, atomization simulation, turbulent breakup

中图分类号: