华南理工大学学报(自然科学版) ›› 2022, Vol. 50 ›› Issue (3): 95-105.doi: 10.12141/j.issn.1000-565X.210232

所属专题: 2022年机械工程

• 机械工程 • 上一篇    下一篇

制动工况下液力变矩器大涡模拟流场仿真及可视化试验验证

柴博森1,2,3 王广义1 朱国仁1† 闫东1 陆振华4 迟成芳4   

  1. 1.吉林大学 机械与航空航天工程学院,吉林 长春 130022;
    2.吉林大学 汽车仿真与控制国家重点实验室,吉林 长春 130022;
    3.长安大学 高速公路筑养装备与技术教育部工程研究中心,陕西 西安 710061;
    4.江苏华隆兴机械工程有限公司,江苏 无锡 214023
  • 收稿日期:2021-04-20 修回日期:2021-05-31 出版日期:2022-03-25 发布日期:2022-03-01
  • 通信作者: 朱国仁(1965-),男,研究员,硕士生导师,主要从事机械设计及理论研究。 E-mail:zhugr@jlu.edu.cn
  • 作者简介:柴博森(1984-),男,博士后,副教授,主要从事液力传动与流场可视化研究。E-mail:chaibs2012@jlu.edu.cn
  • 基金资助:
    国家自然科学基金面上项目(52075212);吉林省教育厅科学研究项目(JJKH20220977KJ);吉林大学汽车仿真与控制国家重点实验室自由探索项目(ascl-zytsxm-202010);长安大学中央高校基本科研业务费专项资金资助项目(300102251511);中国博士后科学基金面上项目(2018M641776);吉林省博士后科研人员择优资助项目(KF204039)

Large Eddy Simulation Flow Field Analysis and Visualization Test Verification of Hydraulic Torque Converter Under Braking Condition

CHAI Bosen1,2,3 WANG Guangyi1 ZHU Guoren1 YAN Dong1 LU Zhenhua4 CHI Chengfang4   

  1. 1. School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130022, Jilin, China;
    2.State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, Jilin, China;
    3.Engineering Research Center of Ministry of Education of Contrution and Maintenance Equipment and Technology of Expressway, Chang'an University, Xi'an 710061, Shaanxi, China; 
    4. Jiangsu Hualongxing Mechanical Engineering Co.,Ltd., Wuxi 214023, Jiangsu, China
  • Received:2021-04-20 Revised:2021-05-31 Online:2022-03-25 Published:2022-03-01
  • Contact: 朱国仁(1965-),男,研究员,硕士生导师,主要从事机械设计及理论研究。 E-mail:zhugr@jlu.edu.cn
  • About author:柴博森(1984-),男,博士后,副教授,主要从事液力传动与流场可视化研究。E-mail:chaibs2012@jlu.edu.cn
  • Supported by:
    Supported by the National Natural Science Foundation of China (52075212),the Scientific Research Project of the Education Department of Jilin Province(JJKH20220977KJ),the Exploration Foundation of State Key Laboratory of Automotive Simulation and Control(ascl-zytsxm-202010),the Fundamental Research Funds for the Central Universities,CHD (300102251511);the China Postdoctoral Science Foundation Funded Project(2018M641776),and the Jilin Province Postdoctoral Researcher Selected Funding Project(KF204039)

摘要: 为了准确地揭示液力变矩器流场时空演化机理,基于计算流体动力学理论,采用5种不同的大涡模拟(LES)亚格子湍流模型(SL、WALE、WMLES、WMLES S-Omega、KET)精细仿真制动工况下液力变矩器三维流场,识别并提取涡轮内部非定常多尺度三维涡结构,籍此分析时空多尺度涡演化特征及其对流场结构演变的影响规律。基于粒子图像测速(PIV)技术,采用动态实时标定方法,试验测量液力变矩器涡轮内部流场,依托试验后处理所提取的流速场和涡量场信息,对比验证大涡模拟仿真结果,并对5种亚格子湍流模型的仿真适用性进行分析。结果表明:制动工况下,SL和WMLES模型针对涡轮流道主流区域多尺度涡仿真结果相近,流速为0.32~0.85m/s,涡量为250.77~792.95s-1;针对涡轮叶片压力面近壁高流速区域,WMLES模型仿真结果与PIV试验结果相吻合,流速为3.7~4.4m/s,而WMLES S-Omega模型对该区域内涡量场的仿真结果较好,涡量为526.47s-1;从三维涡仿真角度来看,WMLES和WMLES S-Omega模型对叶片吸力面附近三维涡数值模拟结果更加丰富,针对叶片近壁面小尺度涡旋结构捕捉较为准确,KET模型仿真结果重现了涡轮叶片出口处明显的涡脱落现象,其他模型对于三维涡结构识别不够准确。研究结果可为液力变矩器高精度数值模拟提供理论指导。

关键词: 液力变矩器, 大涡模拟, 亚格子, 湍流模型, 可视化试验

Abstract: In order to accurately reveal the spatio-temporal evolution mechanism of the flow field of the hydraulic torque converter, five different Large Eddy Simulation models (SL, WALE, WMLES, WMLES S-Omega, KET) were used to simulate the three-dimensional flow field of hydraulic torque converter under braking conditions based on computational fluid dynamics theory. It identified and extracted the unsteady multiscale three-dimensional vortex structure inside the turbine, and then analyzed the characteristics of spatiotemporal multiscale vortex evolution and its influence laws on the evolution of flow field structure. Based on Particle Image Velocimetry (PIV) technology, dynamic real-time calibration method was used to measure the flow field inside the turbine of hydraulic torque converter. Based on the velocity and vorticity information extracted from the post processing, the simulation results of large eddy simulation were compared and the simulation applicability of five subgrid-scale turbulence models was analyzed. The results show that under braking conditions, the multiscale eddy simulation results of SL and WMLES models for the main flow area of the turbine channel are similar, the flow velocity ranges from 0.32m/s to 0.85m/s and the vorticity ranges from 250.77s-1 to 792.95s-1; for the turbine blade pressure surface near the wall high velocity area, the simulation results of WMLES model meet the PIV test results, the flow velocity ranges from 3.7m/s to 4.4m/s, while WMLES S-omega model is better for the simulation of vorticity field is better and the vorticity is 526.47s-1. From the perspective of three-dimensional vortex simulation, WMLES and WMLES S-omega models have more abundant numerical simulation results of three-dimensional vortex near the suction surface of blades, and they are more accurate in capturing small-scale vortex structures near the wall of blades. The KET model simulation results reproduce the obvious vortex shedding phenomenon at the turbine blade outlet, while other models are not accurate enough to identify the structure of three-dimensional vortex. The research results can provide theoretical guidance for high precision numerical simulation of hydraulic torque converter.

Key words: hydraulic torque converter, large eddy simulation, subgrid-scale, turbulence model, visualization test

中图分类号: