华南理工大学学报(自然科学版) ›› 2021, Vol. 49 ›› Issue (1): 74-81.doi: 10.12141/j.issn.1000-565X.200289

所属专题: 2021年机械工程

• 机械工程 • 上一篇    下一篇

基于自适应滤波器的无人驾驶汽车速度估计

张家旭1,2 王晨王欣志赵健1†   

  1. 1. 吉林大学 汽车仿真与控制国家重点实验室,吉林 长春 130022; 2. 中国第一汽车集团有限公司 智能网联研发院,吉林 长春 130011
  • 收稿日期:2020-06-08 修回日期:2020-07-14 出版日期:2021-01-25 发布日期:2021-01-01
  • 通信作者: 赵健 ( 1978-) ,男,教授,博士生导师,主要从事汽车地面系统分析与控制研究。 E-mail:zhaojian@jlu.edu.cn
  • 作者简介:张家旭 ( 1985-) ,男,博士,高级工程师,主要从事汽车地面系统分析与控制研究。E-mail: zhjx_686@163.com
  • 基金资助:
    国家自然科学基金资助项目 ( 51775235) ; 国家重点研发计划项目 ( 2018YFB0105103)

Self-Driving Vehicle Speed Estimation Based on Adaptive Filter

ZHANG Jiaxu1,2 WANG Chen1 WANG Xinzhi1 ZHAO Jian1   

  1. 1. State Key Laboratory of Automotive Simulation and Control,Jilin University,Changchun 130022,Jilin,China; 2. Intelligent Network R&D Institute,China FAW Group Co. ,Ltd. ,Changchun 130011,Jilin,China
  • Received:2020-06-08 Revised:2020-07-14 Online:2021-01-25 Published:2021-01-01
  • Contact: 赵健 ( 1978-) ,男,教授,博士生导师,主要从事汽车地面系统分析与控制研究。 E-mail:zhaojian@jlu.edu.cn
  • About author:张家旭 ( 1985-) ,男,博士,高级工程师,主要从事汽车地面系统分析与控制研究。E-mail: zhjx_686@163.com
  • Supported by:
    Supported by the National Natural Science Foundation of China ( 51775235) and the National Key R&D Program of China ( 2018YFB0105103)

摘要: 针对无人驾驶汽车容错控制对速度信息软测量技术的需求,提出了一种基于交 互式多模型无迹卡尔曼滤波器的无人驾驶汽车速度估计方法,以自适应系统未知的噪声 统计特性。首先,基于无人驾驶汽车定位信息建立了包含汽车运动学和动力学特性的名 义模型,并采用前向欧拉离散化方法将其转化为包含系统噪声统计特性的状态空间名义 模型; 然后,采用一系列典型值描述系统未知的噪声统计特性,得到一系列包含不同系 统噪声统计特性的状态空间名义模型,并针对每一个状态空间名义模型,分别采用无迹 卡尔曼滤波器对无人驾驶汽车的速度进行实时估计,通过交互式多模型算法平滑融合无 迹卡尔曼滤波器的输出,由此得到对系统噪声统计特性具有自适应能力的交互式多模型 无迹卡尔曼滤波器。实车试验结果表明,所提出的方法对汽车纵向速度的估计精度是传 统无迹卡尔曼滤波方法的 4 倍,对汽车侧向速度的估计精度是传统无迹卡尔曼滤波方法 的 1. 5 倍,满足无人驾驶汽车容错控制的需求。

关键词: 汽车工程, 无人驾驶汽车, 速度估计, 无迹卡尔曼滤波器, 交互式多模型, 自适应

Abstract: According to the requirement of the fault-tolerant control for the soft speed-sensing technology,a novel self-driving vehicle speed estimation method based on the interacting multiple-model unscented Kalman filter was proposed to adapt to the unknown statistical characteristics of the system noise. Firstly,a nominal model,which includes vehicle kinematic and dynamic characteristics,was established based on the positioning information of the self-driving vehicle,and then it was transformed into a state space nominal model including the unknown statistical characteristics of the system noise by using the forward Euler discretization method. Secondly,a series of typical values were used to describe the unknown statistical characteristics of the system noise,and a series of state space nominal models including different statistical characteristics of the system noise were obtained. For each state space nominal model,unscented Kalman filter was used to estimate the self-driving vehicle speed and all of the outputs were smoothly fused by interactive multiple-model algorithm. Thus,the interacting multiple-model unscented Kalman filter with adaptive ability to the statistical characteristics of the system noise was obtained. Simulation results show that the estimation accuracy of the proposed method for the vehicle longitudinal and lateral speeds is 4 times and 1. 5 times as many as that of the unscented Kalman filter,respectively,which satisfies the requirement of the fault-tolerant control for the self-driving vehicle.

Key words: vehicle engineering, self-driving vehicle, speed estimation, unscented Kalman filter, interactive multiple-model, adaptive

中图分类号: