华南理工大学学报(自然科学版) ›› 2021, Vol. 49 ›› Issue (1): 65-73.doi: 10.12141/j.issn.1000-565X.200012

所属专题: 2021年机械工程

• 机械工程 • 上一篇    下一篇

线控转向系统的自适应神经网络滑模控制

罗玉涛 郭海文   

  1. 华南理工大学 机械与汽车工程学院,广东 广州 510640
  • 收稿日期:2020-01-10 修回日期:2020-07-15 出版日期:2021-01-25 发布日期:2021-01-01
  • 通信作者: 罗玉涛 ( 1972-) ,男,博士,教授,主要从事新能源及智能网联汽车的设计、控制及动力学研究。 E-mail:ctytluo@scut.edu.cn
  • 作者简介:罗玉涛 ( 1972-) ,男,博士,教授,主要从事新能源及智能网联汽车的设计、控制及动力学研究。
  • 基金资助:
    广东省科技攻关项目 ( 2015B010119002,2016B010132001) ; 华南理工大学中央高校基本科研业务费专项资 金资助项目 ( D2181820)

Adaptive Neural Network Sliding Mode Control for Steer-by-Wire System

LUO Yutao GUO Haiwen   

  1. School of Mechanical and Automotive Engineering,South China University of Technology,Guangzhou 510640,Guangdong,China
  • Received:2020-01-10 Revised:2020-07-15 Online:2021-01-25 Published:2021-01-01
  • Contact: 罗玉涛 ( 1972-) ,男,博士,教授,主要从事新能源及智能网联汽车的设计、控制及动力学研究。 E-mail:ctytluo@scut.edu.cn
  • About author:罗玉涛 ( 1972-) ,男,博士,教授,主要从事新能源及智能网联汽车的设计、控制及动力学研究。
  • Supported by:
    Supported by the Science and Technology Research Project of Guangdong Province ( 2015B010119002, 2016B010132001) 

摘要: 传统滑模控制 ( SMC) 方法应用到线控转向系统时,需要预先获取系统干扰的 上界值,且系统干扰变化会导致转角控制稳定性变差。为了提高线控转向系统的车轮转 角跟踪性能,提出了一种考虑系统干扰的自适应神经网络滑模控制 ( RBFSMC) 方法。 RBFSMC 先采用径向基神经网络对系统的不确定性和电机力矩扰动进行实时估计,再结 合传统滑模控制设计车轮转角控制器,以提高转角控制的自适应性和稳定性。Matlab / Simulink、CarSim 对 SMC 和 RBFSMC 的联合仿真结果对比表明,在车辆维持转向、连 续转向和单移线/双移线工况下,RBFSMC 能更好地维持 0°车轮转角和实现动态车轮转 角快速稳定的跟踪,较 SMC 具有更好的转角响应和跟踪性能,说明 RBFSMC 比 SMC 具 有更好的鲁棒性和稳定性。

关键词: 线控转向, 径向基神经网络, 自适应性, 滑模控制 

Abstract: When the traditional sliding mode control ( SMC) method is applied to steer-by-wire ( SBW) system,it is necessary to obtain the upper bound value of system disturbance in advance,and the change of system disturbance will lead to poor stability of angle control. In order to improve the wheel angle tracking performance of SBW system,an adaptive neural network sliding mode control ( RBFSMC) method considering system disturbance was proposed. Firstly,the RBF neural network was used to estimate the system uncertainty and motor torque disturbance in real time. Secondly,the wheel angle controller was designed by combining RBF with SMC in order to improve the adaptability and stability of the angle control. The joint simulation results of MATLAB /Simulink and CarSim on SMC and RBFSMC show that,RBFSMC can better maintain 0° wheel angle and realize fast and stable tracking of dynamic wheel angle under the conditions of vehicle maintaining steering,continuous steering and single /double lane changing,and it has better corner response and tracking performance than SMC. The study indicates that RBFSMC has better robustness and stability than SMC.

Key words: steer-by-wire, radial basis function neural network, adaptivity, sliding mode control

中图分类号: