华南理工大学学报(自然科学版) ›› 2020, Vol. 48 ›› Issue (4): 54-64.doi: 10.12141/j.issn.1000-565X.190275

• 机械工程 • 上一篇    下一篇

基于 Chebyshev 零点多项式区间不确定的可靠性拓扑优化设计#br#

苏海亮1,2 兰凤崇1,2 贺裕雁3 陈吉清1,2†
  

  1. 1. 华南理工大学 机械与汽车工程学院,广东 广州 510640; 2. 华南理工大学 广东省汽车工程重点实验室,广东 广州 510640; 3. 华南理工大学 工商管理学院,广东 广州 510640
  • 收稿日期:2019-05-17 修回日期:2019-09-08 出版日期:2020-04-25 发布日期:2020-04-01
  • 通信作者: 陈吉清(1966-),女,教授,博士生导师,主要从事汽车结构及安全研究。 E-mail:chjq@scut.edu.cn
  • 作者简介:苏海亮(1988-),男,博士生,主要从事汽车结构可靠性优化设计研究。E-mail:meshliang@mail.scut.edu.cn
  • 基金资助:
    国家自然科学基金资助项目 (51775193); 广东省科技计划项目 (2016A050503021,2015B010137002)

Reliability Topology Optimization Design Based on Chebyshev Zero Polynomial Interval Uncertainty 

SU Hailiang1,2 LAN Fengchong1,2 HE Yuyan3 CHEN Jiqing1,2   

  1. 1. School of Mechanical and Automotive Engineering,South China University of Technology,Guangzhou 510640,Guangdong,China;2. Guangdong Provincial Key Laboratory of Automotive Engineering,South China University of Technology,Guangzhou 510640,Guangdong,China; 3. School of Business Administration,South China University of Technology,Guangzhou 510640,Guangdong,China
  • Received:2019-05-17 Revised:2019-09-08 Online:2020-04-25 Published:2020-04-01
  • Contact: 陈吉清(1966-),女,教授,博士生导师,主要从事汽车结构及安全研究。 E-mail:chjq@scut.edu.cn
  • About author:苏海亮(1988-),男,博士生,主要从事汽车结构可靠性优化设计研究。E-mail:meshliang@mail.scut.edu.cn
  • Supported by:
    Supported by the National Natural Science Foundation of China (51775193) and the Science and Technology Planning Project of Guangdong Province (2016A050503021,2015B010137002)

摘要: 传统的结构拓扑优化分析和设计都是基于特定参数确定性的物理模型。然而,在实际的结构设计中存在着广泛的不确定性,这种不确定性严重影响结构的物理性能。文中基于多椭球凸模型的非概率可靠性来量化结构参数的变化,研究存在不确定但有界的参数的连续体结构的拓扑优化问题。首先,建立变量具区间不确定性的可靠性拓扑优化模型,以结构设计区域质量最小为目标函数; 然后,根据可靠性指标的几何意义,应用非概率模型寻求满足目标可靠性指标约束的设计点; 在此基础上,应用区间 Cheby-shev 零点多项式逼近归一化随机变量的真实极限状态函数,并利用单环可靠性算法计算相应目标可靠性指标下的最佳设计点值,从而使得非概率可靠性优化问题可以转化为确定性优化问题。两个数值例子说明了方法的有效性。结果表明,与确定性的结构拓扑优化设计相比,考虑变量随机性的可靠性拓扑优化能够获得更加可靠的拓扑结构。

关键词: 结构拓扑优化, 不确定性, 非概率可靠性, Chebyshev 多项式, 凸模型

Abstract: Traditional structural topology optimization analysis and design is a deterministic physical model based on specific parameters. However,in the actual design process,there are a wide range of uncertainties,which extreme-ly affect the physical properties of the structure. In this study,the variation of structural parameters was quantified by the non-probabilistic reliability based on multi-ellipsoidal convex model,and the topology optimization problem with uncertain but bounded parameter continuum structure was studied. Firstly,the reliability topology optimization model with variable uncertainty was established,taking the structural design quality minimization as the objective function. Then,based on the geometric meaning of the reliability index,the non-probability model was used to find the design point that satisfies the target reliability index constraint. On this basis,the interval Chebyshev zero poly-nomial was applied to approximate the real limit state function of the normalized random variable,and the single-loop reliability algorithm was used to calculate the optimal design points value under the corresponding target relia-bility index,so that the optimization problem of non-probability reliability can be transformed into deterministic op-timization problem. The effectiveness of the method was illustrated by two numerical examples. The results show that,compared with the deterministic structural topology optimization design,the reliability topology optimization with random variables can obtain more reliable topology structure.

Key words: structural topology optimization, uncertainty, non-probabilistic reliability, Chebyshev polynomial, convex model